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ABSTRACT

In this series of studies, we develop a numerical tool for mod-
eling finite deformation of reservoir rocks. We present an at-
tempt to eliminate the main limitations of idealized meth-
ods, for example, elastic or kinematic, that cannot account for
the complexity of rock deformation. Our approach is to use
rock mechanics experimental data and finite element models
(Abaqus). To generate realistic simulations, the present nu-
merical rheology incorporates the dominant documented de-
formation modes of rocks: (1) rock mechanics experimental
observations, including finite strength, inelastic strain hardening,
strength dependence on confining pressure, strain-induced di-
lation, pervasive and localized damage, and local tensile or shear
failure without macroscopic disintegration; and (2) field ob-
servations, including large deformation, distributed damage,
complex fracture networks, and multiple zones of failure.

Our analysis starts with an elastic–plastic damage rheology
that includes pressure-dependent yield criteria, stiffness deg-
radation, and fracturing via a continuum damage approach,
using the Abaqus materials library. We then use experimental
results for Berea Sandstone in two configurations, four-point
beam and dog-bone triaxial, to refine and calibrate the rheol-
ogy. We find that damage and fracturing patterns generated
in the numerical models match the experimental features
well, and based on these observations, we define damage frac-
turing, the fracturing process by damage propagation in a rock
with elastic–plastic damage rheology. In part 2, we apply this
rheology to investigate fracture propagation at the tip of a
hydrofracture.
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INTRODUCTION

Fracturing in the crust strongly depends on the rheology of
host rocks. In addition to the original lithology, the rheology
is affected by nonlinear time-dependent diagenesis and defor-
mation processes that lead to nonuniform damage-prone rock
properties. Classicalmodels of linear elastic fracturemechanics
(Irwin, 1958) and crack-tip shieldingmodels (Barenblatt, 1962)
may not be applicable to in-situ growth of natural fractures be-
cause they are based on linear elasticity, require idealized flaws
(e.g., elliptical cracks), and are based on arbitrary selection of
interaction configurations (e.g., en echelon segments).

Our main objective is to analyze the processes of fracture
initiation and fracture propagation in rocks with complex and
more realistic rheology that can undergo finite strain and
inelastic deformation. We explore the spontaneous gener-
ation of complex patterns, including fracture segmentation
(Delaney et al., 1986), damage bridging (Weinberger et al.,
2000), branching (Sagy et al., 2001), and arrest-and-rupture fea-
tures, without assuming preexisting seeds of geometric com-
plexity. We refer to the fracturing process by damage propa-
gation in a rockwith elastic–plastic damage rheology as damage
fracturing, which differs from the concepts of linear elastic
fracture mechanics and shielded fracture mechanics as dis-
cussed in following sections.

This analysis is for nonlinear rheology with progressive
deformation that is sensitive to in-situ loading conditions and
is capable of brittle failure by fracture propagation. To meet
these requirements, we used the finite element (FE) method
(Fish and Belytschko, 2007) that allows solving nonlinear tran-
sient problems. We used the Abaqus FE software that has a li-
brary of material models suitable for rocks and is flexible in
implementing geologic boundary conditions. The present mod-
els focus on rock behavior under upper crustal conditions with
elastic-plastic behavior, progressive damage, and failure in an
attempt to realistically simulate rock deformation under in-situ
conditions. We develop a numerical model with material pa-
rameters that are derived from tensile and compressive stress-
strain curves of the Berea Sandstone, and then benchmark sim-
ulations of two experimental configurations are performed to
calibrate the model rheology.

In related studies (Busetti, 2009; part 2, Busetti et al., 2012),
we apply this damage rheology to hydraulic fracturing of a rock
layer and find that tendency to fracture and fracture geometry
are determined by damage distribution, stress path, and dy-
namical rupture processes. We also applied the numerical sim-
ulations to examine fracture networks formed during hydraulic



fracturing and their relations to subsurface field
data (borehole image logs, pressure-time logs, and
microseismic distribution) (Busetti, 2009, 2010).
These studies provide insight on the activation of
preexisting fractures in dilation, shear, or closure
and their effect on fracture propagation by rock
damage. The applicability of the rheology to model
fold-scale deformation was demonstrated in a study
of intralayer deformation above a ramp structure
(Heesakkers et al., 2009).

In this article, we first outline the concept of
damage fracturing and then describe damage pat-
terns observed in rockmechanics experiments along
with schemes for damage quantification. Next, we
discuss the FE damagemodel based on a continuum
damage theory and describe the implementation of
this damage rheology for the rock experiments. A
product is a constitutive model and failure criteria
for Berea Sandstone that incorporates elastic, plastic,
and damage parameters and can be implemented
numerically to simulate complex deformation.
ROCK FRACTURING

Fracturing of an Elastic Solid

A central concept of fracture mechanics is that a
large fracture grows from a small initial flaw that
amplifies the local stresses, and the large fracture
propagates when these local stresses exceed the
strength of the solid (Griffith, 1921; Lawn, 1993).
The above concept was formulated by linear elastic
fracture mechanics (LEFM), in which a mode I
model consists of “crack-tip, near-field” solutions
for stress and displacement fields around a slitlike
plane crack (Irwin, 1958). The crack tip is assumed
to be sharp, and the material is idealized as a linear
elastic solid with unspecified strength (Lawn, 1993).
The stresses at the proximity of a fracture are scaled
by the stress intensity factor,K, which is a function
of the remote stress (e.g., tectonic) and/or fracture
internal loads, fracture geometry, and the loading
configuration. According to LEFM, mode I prop-
agation occurs when the stress intensity factor KI

reaches the critical value of the fracture toughness,
KIC, a material property; subcritical crack growth
may occur under lower KI (Lawn, 1993). Equiva-
lently, one can consider the energy associated with
fracture propagation. When the fracture energy
from loading, G, reaches the intrinsic limit of the
material, GC, the fracture extends by length, dc,
where GI ¼ �dU=dc ¼ K 2

I E=ð1� v2Þ for mode I,
andGIC ¼ K 2

IC E=ð1� v2Þ, where E is the isotropic
Young’s modulus and v is Poisson’s ratio. The term
U is the mechanical energy of the system and in-
cludes the elastic potential within the material and
the potential energy from external loading.
Fracturing of an Elastic Solid with
Crack-Tip Yielding

The stress singularity at the crack tip under LEFM
(e.g.,Kanninen andPopelar, 1985)was replacedby a
small zone with a nonlinear cohesive stress function
(Barenblatt, 1962). This cohesive zone accounts
for the fact that materials have a finite strength gov-
erned by interatomic stresses (Barenblatt, 1962)
or plastic yield strength (Dugdale, 1960). The ex-
istence of a cohesive zone changes the crack profile
from parabolic to a cuspate form, where the frac-
ture narrows at the crack tip. According to this
model, propagation occurs when the stress inten-
sity factor, K, reaches the critical value of the frac-
ture toughness of the cohesive zone, or the intrinsic
toughness, given for a straight crack (Lawn, 1993).
The J-integral technique (Rice, 1968) effectively
solves for the energy balance around the nonlinear
cohesive zone as long as the stress-strain character-
istics are reversible. If dissipative processes are con-
sidered, additional steps are required, for example,
limiting plastic deformation by enforcing mono-
tonic loading or by introducing a shielding zone
(Lawn, 1993). The shielding concept (Thompson,
1986) accounts for the fact that many materials
exhibit toughening at the crack tip that is indepen-
dent of external loading conditions and results in
an effective “blunting” of the crack tip. Shielding
mechanisms include a zone of dislocations, micro-
cracks, and phase transformations in front of the
crack tip.

The model of a cohesive crack-tip and a shield-
ing zone is relevant to fracture propagation in rocks
Busetti et al. 1689



that exhibit macroscopic propagation via coales-
cence and linkage of microcracks within a damage
front. For example, experimental observations in-
dicate that the physical location of the crack tip
may be ambiguous because of the development of
a network of microcracks in the crack frontal zone.
The process follows several stages: (1) initial state,
(2) initiation, (3) small growth and linkage, and
finally, (4) large growth and linkage (Takahashi and
Abe, 1987), and can generate complex fracture
patterns (Figure 1).
Damage Fracturing of an Inelastic Solid

The present analysis examines fracture propaga-
tion in rocks with damage rheology. Using the con-
text of continuum damage mechanics eliminates
the need to a priori define multiple zones (elastic,
1690 Damage Fracturing
cohesive, and shielding) and allows damage to ini-
tiate and propagate according to the intrinsic con-
stitutive rheology of the rock. This rheology is based
on the experimental observation that many rocks
undergo pervasive damage from the initial stages
of loading and fractures form within the zones of
damage. The nonlinear damage evolution degrades
the rock stiffness primarily by microcrack inter-
action (e.g., Kachanov et al., 1990; Lyakhovsky
et al., 1993; Katz and Reches, 2004). Unlike the
insertion of cohesive or shielding zones as discussed
above, damage fracture propagation is localized
within weakening zones that are spontaneously
determined by the material constitutive behavior.
Furthermore, rock mechanics experiments indi-
cate that, during progressive deformation, the crit-
ically stressed regions are not necessarily restricted
to the tip of a distinct initial crack and may occur
randomly within the host because of innumerable
Figure 1. Damage frac-
ture pattern ahead of an
initial crack notch from rock
mechanics experiments in
granite for a simple (A) and
complex (B) case (Takahashi
and Abe, 1987, used with
permission of Elsevier). Note
that the final fracture pat-
tern is complex, similar to
the photograph. (C) An ex-
ample of a complex fracture
in outcrop (Jackfork Sand-
stone, Kirby Quarry, Ar-
kansas) showing branches
and multiple linking seg-
ments within the upward-
widening damage zone.



randomly distributed microflaws. In brittle rocks,
yielding is characterized by nonlinear inelasticity
associated with stress-induced damage accumula-
tion (e.g., Ashby and Hallam, 1986; Lockner et al.,
1992; Reches and Lockner, 1994). A field ap-
plication of damage fracturing was presented by
Weinberger et al. (2000) who compared damage
simulations with field observations of fracture pat-
terns and damage distribution around dike seg-
ments in sandstones. They used a damage model
(Lyakhovsky et al., 1997) that considers a linear
elastic matrix populated with penny-shaped cracks
(Kachanov, 1992). In this scheme, the energy ex-
pression considers the effective moduli, le (ld, md, l,
strain) and me (ld, md, g, strain), for a medium dam-
aged by a mode I crack, where l and m are the first
and second Lame parameters, g is an additional
modulus, and the superscripts e and d reflect the
moduli in their original and damaged states. The
crack energy release rate is given by the J-integral:
J ¼ K 2

1 ð1� n2Þ=E, where E is Young’s modulus, n
is Poisson’s ratio, and KI is the mode I fracture
toughness. The energy of the damaged rock is given
by Ud ¼ 1=r ðI 2

1 l=2þ I2 ðmd � gb2Þ � 2gbI1
p
I2,

where r is the microcrack density, I1 and I2 are
strain invariants, and b reflects the state of strain
(Lyakhovsky et al., 1997).

Rock fracturing is analyzed here by simulating
deformation in solids with damage rheology that
may realistically represent the in-situ rock behav-
ior. We refer to this process as damage fracturing
to distinguish it from the LEFM and shielded-tip
fracture mechanics outlined above. The analysis is
based, in part, on previous damage models (be-
low); however, our approach differs in one central
point: we focus on geometry and pattern of dam-
age fractures, whereas previous analyses focused
on the general rheologic character attributed to
damage evolution.

This approach has several advantage points.
First, it was demonstrated in many works (e.g.,
Lockner et al., 1992;Weinberger et al., 1994; Katz
and Reches, 2004) that rocks undergo pervasive
and localized damage starting under small strain
(<1%). Second, field and experimental studies dis-
play complex fractures and networks of fractures
that cannot be explained by elastic analysis, and as
demonstratedhere and inpart 2 (Busetti et al., 2012),
the damage fracturing analysis spontaneously pre-
dicts such modes. Third, damage fracturing does
not require any special assumption, such as initial
perturbations or nonrealistic high stresses. Fourth,
damage fracturing does not suffer from the pre-
sent computational limitations of local element
enrichment formulations (i.e., the extended fi-
nite element method [XFEM]) such as limits on
the number of fractures that can cross an enriched
element or the difficulty in synthesizing pressure-
dependent yielding with traction-separation de-
finitions for crack propagation.

DAMAGE RHEOLOGY IN ROCKS

Rock Inelasticity and Damage

The recoverable elastic deformation stage for brit-
tle rocks corresponds to small strain magnitudes
(<1%). However, in most geologic structures, de-
formation exceeds the elastic limit, leading to the
development of permanent heterogeneous strain
patterns. The deformation involves many inelastic
processes: continuous distortion (e.g., twinning and
dislocations), microfracturing and macrofracturing,
cataclasis, brecciation, faulting, and formation of
shear zones, compaction bands, and tight folds.
Consequently, analysis of most geologic structures
requires the consideration of finite strain and non-
linear inelasticity. A typical stress-strain curve for
rock (Figure 2) can be divided into five main stages
interpreted as (1) initial nonlinear stress change as-
sociated with crack and pore dilation and closure;
(2) elastic stage (linear or nonlinear); (3) nonlinear
strain hardening associated with the onset of brit-
tle microcracking and plasticity; (4) continued
hardening characterized by progressive crack co-
alescence in a fracture process zone; and finally,
(5) ultimate failure, strain softening, and macro-
scopic crack propagation (Katz and Reches, 2004).
After an initial elastic stage, the rock enters a strain-
hardening stage that is dominated by the accu-
mulation of damage, primarily by microcracking
(e.g.,Ashby andHallam, 1986; Lockner et al., 1992;
Reches and Lockner, 1994). The rock progressively
Busetti et al. 1691



weakens because of evolving cracks and micro-
cracks (Walsh and Brace, 1964; Walsh, 1965), plas-
tic deformation (Handin and Hager, 1957; Mogi,
1973), stress shielding (Thompson, 1986), and di-
latancy (Brace et al., 1966; Nur, 1975). Macroscop-
ically, this degraded stiffness is linked to the evolu-
tion of stress-induced damage (Lyakhovsky et al.,
1997; Katz and Reches, 2004) that leads to local
fracturing (e.g., Rice, 1975) and, eventually, to fail-
ure. The locations, timing, and amount of dam-
age associated with the strain-hardening stage have
been quantified using thin-section maps, scanning
electron microscopy, and acoustic emissions (AE)
logs. The experiments showed that the total amount
of damage increases nonlinearly beginning at the
onset of inelasticity (e.g., Lockner et al., 1992;
1692 Damage Fracturing
Eberhardt, 1998; Stanchits and Dresen, 2003;
Backers et al., 2005; Bobich, 2005; Chen et al.,
2006). The damage is nonuniformly distributed,
as shown for example by Backers et al. (2005) for
sandstone under three-point beam bending and
by Reches and Lockner (1994) for triaxial load-
ing of granite.
Deformation Modulus

The accumulation of damage and the changing
shape of the stress-strain curve (stage III, black line in
Figure 2) can be macroscopically presented by the
deformation modulus, D, which is the local slope
of an experimental stress-strain curve (Johnson
and Page, 1976; Katz andReches, 2004) (red curve,
Figure 2. A typical stress-strain response for rock under confining pressure (modified from Katz and Reches, 2004). The curves are axial
(black), volumetric (blue), and inelastic (green) strain, corresponding to the lower x axis. The experimental deformation modulus (red,
upper x axis) is measured as the local change in slope of the axial stress-strain curve: D = d (s1 − s3)/de and approximates the degree of
stiffness degradation. The s1 and s3 are the axial and confining stresses. The y axis shows normalized differential stress = (s1 − s3)/Us,
where Us = the Coulomb strength. The five main stages of deformation are (also see text) (I) crack/pore closure, (II) linear elasticity, (III)
strain hardening and microcracking, (IV) crack coalescence and formation of a process zone, and (V) macroscopic propagation. Note that
the inelastic and volumetric strains increase nonlinearly during strain hardening. Insets show mapped microcracks for stages I, III, and V,
ranging from preexisting background damage at the bottom to a coalesced macroscopic fracture at the top. Cci = the crack-initiation
stress where dilation begins; Ccd = the crack-damage stress where failure initiates.



Figure 2). It provides a phenomenological approx-
imation of the material properties at different stages
of deformation. The strain hardening can be de-
scribed as macroscopic stiffness degradation asso-
ciated with a reduction in the elastic load-carrying
capacity of the rock. Stiffness, deformation, and
load-carrying capacity are expressed by modifying
the familiar equation (e.g., Hooke’s law):

s ¼ Ee ð1aÞ

where s is the Cauchy stress tensor, E is the stiff-
ness matrix, and e is the elastic strain tensor. A
stress change, ds, corresponds to each strain incre-
ment, de, such that

ds ¼ Ede ð1bÞ

Because the material stiffness changes during
deformation, the initial elastic stiffness, E, is no
longer applicable, and is replaced by a more gen-
eral tensor, D, that includes permanent inelastic
deformation attributed to stress-induced damage
(Katz and Reches, 2004). The D accounts for the
sum of the degradation behavior but does not dis-
tinguish individual weakening mechanisms. Re-
arranging (1b) and using differential stress (s1 − s3),
where s1 and s3 are the axial and confining stresses,
in place of s (for triaxial tests) defines the defor-
mation modulus, D:

D ¼ d ðs1 � s3Þ=de ð2Þ

Before the onset of damage, when D = Dmax

(Figure 2),D is equivalent to the Young’s modulus.
At various incremental states, D = D′ < Dmax.
TheD′ andDmax are the deformed and undeformed
states. The ratio of the deformed to undeformed
states provides a dimensionless approximation for
stiffness degradation:

D0=Dmax � E0=E0 ð3Þ

where E0 is the original Young’s modulus and E′ is
the apparent modulus at the deformed state.

Coalescence and shear-zone development in-
dicate a strong dependence on the strain history; a
damage “memory” that affects future events exists.
A nondegrading or static damage scheme will give
nonphysical results. Principally, the mechanisms
for damage and the magnitude of damage interac-
tion (i.e., inelastic energy dissipation) are transient
phenomena. The solution is to introduce an evolv-
ing stress function that depends on the state of stress
and strain history; clearly, this is a task for an ad-
vanced numerical method as presented below.

PRESENT ANALYSIS

Approach

The central goal of this study is to analyze the pro-
cess of damage fracturing of rocks. We model frac-
tures that initiate and propagate spontaneously to
form patterns of natural fractures in a rock body
with damage rheology. The selected rheology is
valid for finite deformation and includes plastic
yielding, as well as failure in tension and compres-
sion. In this scheme, pressure-dependent yield
strength controls the onset of microcracking damage
and internal dissipation processes (plasticity) that are
coupled to control finite deformation. Plasticity is
based on the Mohr-Coulomb and Drucker-Prager
failure models as implemented in the FE code
Abaqus that we use in this study. The formulation
of the rheology is presented in Appendix 1.

We base the present models on rock mechan-
ics experimental data for Berea Sandstone, a com-
mon reservoir rock analog. Our approach to adapt
rock mechanics data into the Abaqus FE damage
model includes the following steps:

1. Acquisition of experimental data of the rele-
vant rock and deformation conditions

2. Conversion of the experimental data into input
material parameters used in Abaqus; we used
the material “concrete damage plasticity” (Aba-
qus manual Simulia, 2010b and below)

3. Creation of an FE model for the laboratory
configuration

4. Calibrations by iterative model simulations and
adjustment of material parameters to match
the laboratory results (forward modeling)
Busetti et al. 1693



5. Application of the calibrated material to other
models and geologic analysis (part 2, Busetti et al.,
2011)

The details of these steps are described in the
next section.
Experimental Data

Berea Sandstone: A Typical Reservoir Rock
The Berea Sandstone is commonly used as an
analog for reservoir rock (e.g., Hart and Wang,
1995; Menendez et al., 1996). This rock consists
of medium-grained, well-sorted, subangular quartz
(∼80%), feldspar (∼5%), and clay (∼8%) and is
cemented by calcite (∼6%) (Hart andWang, 1995).
The Berea Sandstone has well-documented me-
chanical properties (E = 19.3–27.5 GPa [2.8 × 106–
4 × 106 psi]; n = 0.17–0.34; unconfined compressive
strength = 71.3–74 MPa [10,341–10,733 psi];
unconfined tensile strength = 3.8–9.8 MPa [551–
1421 psi]) (Table 1) that fall within the ranges of
many reservoir rocks (e.g., Chang et al., 2006).

To calibrate the material parameters, we per-
formed benchmark simulations of rock mechanics
experiments with Berea Sandstone that induce ten-
sile failure under Pc. The incorporation of both ten-
sile and shear failure simultaneously in one rheolog-
ical law is a central advantage of the present analysis.
We attempted to accurately calibrate the critical fea-
tures of stress-strain relations: (1) onset of inelasticity,
(2) strain hardening, (3) ultimate strength, (4) strain
softening and brittle failure, and (5) postfailure fi-
nite strain. The benchmark models are at a 1:1 scale
to the laboratory tests,with only slight changes to the
load rates to improve computational efficiency.We
used the results of two different experimental con-
figurations published by Weinberger et al. (1994),
Ramsey and Chester (2004), and Bobich (2005).

Four-Point Beam Bending
Weinberger et al. (1994) deformed samples of the
Berea Sandstone, Indiana limestone, and Tennes-
see sandstone in a four-point beam configuration.
The beams were loaded while emplaced in a pres-
sure vessel under aPc of 5 to 50MPa (725–7252 psi)
1694 Damage Fracturing
(Figure 3). The four-point configuration induces
near-uniform tension across the top center of the
beam and was dimensioned to minimize interfer-
ence between the lower two loading points. Rect-
angular beam samples were jacketed with poly-
olefin tubing and loaded inside a servo-controlled
138-MPa (20,015-psi) pressure vessel. An internal
load cell monitored the axial load, P, applied on
the top of the beam; beam strains were measured
with beam-parallel strain gauges located on the
top and at the bottom. The resultant maximum
tension and compression stresses in the beam were
calculated as done by Yokoyama (1988) (Figure 3).

Triaxial Extension of Dog-Bone Samples
Ramsey and Chester (2004) and Bobich (2005) de-
formed dog bone–shaped samples of Carrara mar-
ble and Berea Sandstone under Pc as part of their
study on the transition from extension to shear
fracturing. The dog-bone shape with a central cy-
lindrical neck (Figure 4) was designed to produce
uniform tensile stress at the sample center. A mod-
eling clay layer along the neck part was constructed
to transmit the Pc uniformly, and a polyolefin jacket
was used around the entire sample. Pistons at the
top and bottom of the sample moved simulta-
neously while recording axial force, axial displace-
ment, and Pc. The experiments recorded acoustic
Table 1. Material Parameters for the Berea Sandstone*
Composition
 Quartz (∼80%), feldspar
(∼5%), calcite (∼6%),

clay (∼8%)

Density
 2100

Young’s modulus, E (GPa)
 19.3–27.5

Poisson’s ratio, v
 0.17–0.34

UCS** damage onset stress (MPa)
 41–58

UCS** damage onset strain
 0.003–0.0035

UCS** fail stress (MPa)
 71.3–74

UCS** fail strain
 0.0045

UTS† damage onset stress (MPa)
 3.2–8.6

UTS† damage onset strain
 0.0007–0.0012

UTS† fail stress (MPa)
 3.8–9.8

UTS† fail strain
 0.0015–0.002
*From Bobich (2005); Weinberger et al. (2000); Eberhardt (1998); Hart and
Wang (1995).

**UCS = unconfined compressive strength.
†UTS = unconfined tensile strength.



emissions using a piezoelectric transducer attached
to the top piston (Bobich, 2005).
Finite Element Models of Experiments

We created three-dimensional (3-D) FEmodels in
the dimensions of the laboratory tests (Figures 5,
6). The models were meshed with eight-node lin-
ear hexahedral elements, with mesh density in-
creasing in the regions with high strain. We used
mirror symmetry at the center of the beam to reduce
computation time. The loading points (two rigid
pins in the beam, and rigid platens in the dog bone)
were modeled using 3-D rigid elements and low-
friction (coefficient of friction, 0.01) master-slave
penalty contacts. Loading was performed in two
steps: (1) Pc was established on all of the free sur-
faces and was held constant throughout the sim-
ulations, and (2) piston motion was simulated by a
constant-velocity boundary condition of the appro-
priate rigid surfaces. For the beam, the top (outer)
pin was lowered at a constant velocity of 0.5 mm/s
(i.e., a velocity of 0.5 mm/s for 1 min would lead
to a total displacement of 30 mm) while holding
the bottom (inner) pin fixed (Figure 5). For the dog-
bone sample (Figure 6), axial pressurewas removed
and the two pistons retracted at a rate of 0.2 to
0.5 mm/s while maintaining constant Pc. These
applied load rates are about 10 times faster than in
the laboratory experiments and were used to re-
duce simulation time that took 6 to 12 h for a
typical run. The ratio of kinetic energy to total sys-
temenergywas found tobe very low, indicating that
using a higher load rate did not introduce adverse
inertial effects. No chatter was observed between
the rigid contacts and the rock during the axial
Figure 3. Four-point beam experimental
configuration of Weinberger et al. (2000).
Confining pressure is applied to the entire
sample. Loading of the piston induces
tension in the upper center of the beam
and compression in the lower center. The
results for the Berea Sandstone, confining
pressure 10 MPa (1450 psi), are shown at
the bottom. The irregular peaks were in-
terpreted by Weinberger et al. (2000) as an
indication of local microcracking.
Busetti et al. 1695



loading step, thus, it was not necessary to use the no-
separation contact option in Abaqus. We also con-
firmed that the material model was unaffected by
the load rate by running a few tests at slower loading
rates and comparing the stress-strain results.
Material Parameters for Numerical Simulations

Table 1 lists the range of stress-strain values from
experiments on the Berea Sandstone. Table 2 lists
the parameters used in the FE models. Interme-
diate points defining the input strain-hardening
and damage curves (Figure 7) were obtained by
iteratively calibrating the benchmarkmodels against
laboratory results (Figures 3–6) to achieve stress-
strain and behavior fitting within the experimental
ranges reported for the Berea Sandstone while en-
suring that realistic definitions for postyield be-
havior and other unknown plastic parameters were
used. For damage-strain evolution, we use a quasi-
sinusoidal curve (Figure 7) based on Eberhardt
(1998) and Bobich (2005) (e.g., Figure 8). We
selected a constant dilation angle of 15°. Other
Abaqus parameters are a Kc value of 0.66 (see
equation 9f ), indicating a small dependence on
the intermediate principal stress, as well as the
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default value for the ratio of initial equibiaxial to
uniaxial compressive yield stress, fb0/f bc = 1.16
(see equation 9c), which contributes to the shape
of the yield surface (Appendix 1; Figure 13). The
Kc is the ratio of the length of the tensile to com-
pressive meridians for a given pressure, that is, con-
trolling the dependence of s2.
Numerical Procedures

Details of the selected constitutive model and rhe-
ological parameters are described in Appendix 1.
We used the explicit dynamic solver of Abaqus/
Explicit; it is well suited for extreme nonlinearity
such as strain localization or contact. When small
stable time increments (10−6 s–10−8 s) are used,
the simulation continues even during extensive
damage propagation. We found that implicit so-
lutions had difficulty converging during strain
softening and terminated shortly after failure. Al-
though the constitutive relationship is time inde-
pendent (i.e., inferring quasistatic deformation),
the analysis solves for acceleration and inertial ef-
fects, thus the modeled time represents true time,
a feature necessary for analysis of transient damage
propagation,which is covered inpart 2 (Busetti et al.,
Figure 4. Dog-bone triaxial experimental
configuration of Bobich (2005) from Ramsey
and Chester (2004). The geometry of the
sample produces tensile failure in the cen-
ter as the upper and lower pistons are
retracted. The experiments were designed
to capture the transitional behavior from
pure tensile to mixed-mode failure. Con-
fining pressure Pc is equal to the two most
compressive stresses, s1 = s2, and the least
compressive stress s3 is oriented parallel
to the axis of the sample.



2012). Because mesh dependence can be a difficulty
in continuum damage simulations, we experimented
with several different meshing schemes. Variations
in the mesh density did not significantly affect the
global solution (e.g., the stress-strain curve). Cap-
turing the localized pattern of damage necessary
to discern individual fractures required a finer mesh
density with elements on the scale of a few milli-
meters. Damage localization patterns were gen-
erally consistent for similarly sized and patterned
meshes, although the specific fracture geometry
varied somewhat.
Macroscopic Failure and Fracturing
The Abaqus software allows implementation of
the damage parameter by either specifying d as a
function of plastic strain during uniaxial loading
(Figure 7) on a load-displacement curve (Rice,
1968) or by directly specifying the fracture energy,
Gf, in compression or tension. The FE implemen-
tation permits simulation of fracture propaga-
tion based on the equivalent crack concept, which
states that there exists a length-scaled damage
zone that is thermodynamically equivalent to a
crack and vice versa (see Appendix 2) (Mazars and
Figure 5. Three-dimensional finite ele-
ment model of the four-point beam con-
figuration, with mesh and dimensions
shown. The confining pressure is applied
to all free surfaces. The beam is modeled
in symmetry, so the far left end of the
model is the true center of the beam.
White arrow indicates the movement of
the piston. The lower pin is fixed. Simu-
lated results for the tensile part of the
beam are shown at the bottom with
comparison with digitized data points for
Weinberger et al. (1994). Colored curves
reflect a few different sampling locations.
The y axis at the right is for the normalized
cumulative damage (small dotted line),
equal to the current damage variable value
for the whole sample d, divided by the
damage variable at the point of failure,
dfail.
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Pijaudier-Cabot, 1996). Using this approach, a
discrete fracture is represented by an equivalent
fracture zone: a path of elements that are com-
pletely damaged and thus have no strength.

SIMULATIONS RESULTS

Macroscopic Stress-Strain Relations

We ran numerous calibration simulations on the
beam and dog-bone configurations.We plotted the
calculated differential stress, Ds, as a function of
Figure 6. Three-dimensional finite ele-
ment model of the dog-bone configura-
tion, with mesh and dimensions shown.
The confining pressure is applied to all of
the free surfaces. Both the upper and
lower platens are rigid frictional contacts
and retract equally. The simulated results
are shown below for several confining
pressures. Digitized data points from Bobich
(2005) are plotted for comparison. The y
axis at the right is for the normalized cu-
mulative damage (small dotted line), equal
to the current damage variable value for
the whole sample, d, divided by the dam-
age variable at the point of failure, dfail.
Table 2. Model Parameters for the Berea Sandstone Finite

Element Method Rheology
Density
 2100

Young’s modulus, E (GPa)
 20.2

Poisson’s ratio, v
 0.27

Dilation angle, Y
 15

Eccentricity
 0.1

fc0/fb0*
 1.16

Stress intensity factor, K
 0.66

Viscous regularization
 0
*Ratio of initial equibiaxial to uniaxial compressive yield stress.



strain across the top center of the beam (Figure 5)
and in the central part of the dog bone (Figure 6)
using averaged element integration point values.
When a reasonable fit between simulation and
experiments was achieved, we ran an additional
refined simulations on the beammodel for 10MPa
(1450 psi) Pc and on the dog-bone model for Pc =
10, 20, 30, 40, 50, 60, 80, 100, 150 MPa (1450,
2901, 4351, 5802, 7252, 8702, 11,603, 14,504,
and 21,756 psi). A good fit in the simulations
should capture the essential stages of strain hard-
ening, failure, and softening at values lying within
the ranges observed experimentally (Figures 3, 5,
8; Table 1). In comparison with experimental re-
sults, the simulated rheology underpredicts non-
linearity associated with strain hardening and ul-
timate strength and overpredicts failure strain in
the beam while underpredicting failure strength in
the dog bone (Figures 5, 6). We think that this
issue is not a limitation of the model, and that by
further refining the plastic parameters, a closer
reproduction can be achieved; however, more de-
tailed calibration is beyond the present scope.

Deformation and Failure Features

Damage Propagation
The distribution of damage in the simulations
shows good agreement with experimental obser-
vations. Figures 9 and 10 show contour plots of
the simulated tensile damage in the two experi-
mental configurations; for brevity, we highlight a
description of the beam. In the beam simulation, the
damage initiates in a broad region corresponding
to maximum strain located off center and at the
beam top. The off-center damage initiation can be
predicated from the curvature plots, d2y/dx2, along
the beam top (solid lines, Figure 11). The figure
shows that the center of the beam top is not quite
uniformly curved, and maximum curvature oc-
curs about 2 cm (0.8 in.) from the beam center
(most likely affected by the lower fixed points).
Damage initiates (color contours in Figure 9, dashed
lines in Figure 11) at 3.5 cm (1.4 in.) from the beam
center and increases nonlinearly toward the re-
gion of maximum curvature, reaching a maximum
value of 1 at about 1.5 cm (∼0.6 in.). Before the
first fracture, the damage in the top center of the
beam increases to d ≈ 0.1, which corresponds to
10% stiffness reduction. Multiple fractures form in
regions of 15 to 20% stiffness reduction.

Onset of Plastic Yielding
The initial linear parts of the stress-strain curves
reflect the Young’s modulus of the undamaged
rock (Figures 5, 6). From the dog-bone simulations,
Figure 7. Postyield curves for plastic strain (top) and damage
(bottom) evolution used in the finite element method rheology
defined in the uniaxial stress state. These parameters were en-
tered directly into the Abaqus material model. The values for
tension (dashed) and compression (solid) are based on experi-
mental data for the Berea Sandstone. The material is about 10
times stronger in compression. The maximum yield stress cor-
responds to a damage parameter of 0.15 to 0.25.
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the elastic stage accounts for the initial 0.0006
to 0.0014 strain at a low Pc (10–30 MPa [1450–
4351 psi]), which increases linearly to 0.0063 at a
Pc = 150 MPa (21,756 psi). Calculating the linear
dependence of plastic onset on the Pc yields

ePO ¼ ðPc+ 3:8×106Þ=2:4× 1010

where ePO is the plastic onset strain and Pc is the
confining pressure in pascals.

Strain Hardening
For a Pc less than 30 MPa (4351 psi), the strain-
hardening stage is pervasive and accounts for up to
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50% of the prefailure strain, displayed as the broad
hump on the stress-strain curve in Figure 5 and for
the curves at a lower Pc in Figure 6. For Pc = 30
to 60 MPa (4351–8702 psi), strain hardening is
greatly reduced and the hump essentially disap-
pears. With increasing Pc = 60 to 150 MPa (8702–
21,756 psi), strain hardening gradually increases
to approximately 10% of the total prefailure strain.
Extensional strain at ultimate failure occurs at
0.0015 for a Pc less than 30 MPa (4351 psi), in-
creasing to 0.007 at 150 MPa (21,756 psi). For
the beam configuration, results are not shown for
compressive stress-strain at the bottom of the beam
because the elastic limit was not exceeded.
Figure 8. Experimental results for damage
evolution in compression (top) (modified
from Stanchits and Dresen, 2003) and triaxial
extension (bottom) (Bobich, 2005). In both
cases, damage is recorded by the cumulative
acoustic emissions (AE) count. Damage in-
creases slowly at first, rapidly increases at the
point of yielding, and continues to accumulate
during strain softening. In the triaxial exten-
sion tests, the numbers beside each curve
mark the confining pressure in MPa. Pc =
confining pressure.



Strength
Consistent with the yield surface definition (Ap-
pendix 1, equation 9b), the ultimate strength in-
creases linearly with Pc, that is, constant inter-
nal friction angle. Failure occurs in the regions
where stress is locally least compressive: under
local tension for a low Pc (<20 MPa [<2901 psi])
and under local compression for a Pc more than
20 MPa (2901 psi). The yield-strain linear rela-
tion to Pc is

eUY ¼ ðPc+ 1:0×106Þ=2:3×1010
where eUY is the ultimate yield strain and Pc is the
confining pressure in pascals.

Softening and Finite Strain
The macroscopic failure at the ultimate strength is
followed by an immediate stress drop (strain soft-
ening) with a transition to constant stress deforma-
tion (Figures 5, 6). Note that, in Figure 6, the stress
drops were only observed if stress was plotted
against monotonic axial strain (i.e., in the figure the
strain curve was extrapolated to monotonic be-
cause, on failure of individual elements, an im-
mediate jump in strain occurs that effectively can-
celed out the stress drops on a stress-strain plot.
Alternatively, strain could have been measured
from displacement of the rigid platens). The plastic
parameters (Table 2; Appendix 1) determine the
Figure 9. Contour plots of the tensile damage parameter for the
four-point beam configuration at four stages of deformation (A–
D). Half of the beam is shown because of symmetry; the center is
at the right. Blue is undamaged material, warm colors represent
increasing damage. Red reflects an equivalent fracture zone with
fully degraded stiffness. Several distinct main fracture paths are
interpreted as forming within a pervasive zone of damage.
Figure 10. Contour plots of damage for the dog-bone setup
showing cases of 20, 50, and 150 MPa (2901, 7252, and 21,756 psi)
confining pressure. Left images are cross sections zoomed in at the
center of the sample. Right images are the same tests but showing
an isosurface view with a damage cutoff of 0.3 applied.
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character of the stress drop, where a more rounded
peak and shallower postfailure slope reflects amore
ductile behavior and a sharper peak, and a steep
slope indicates brittle behavior. The simulations
show that increasing strain softening as well as the
rate and magnitude of damage accumulation con-
tributed to the more brittle behavior observed ex-
perimentally. Brittleness also increased using non-
associated plastic flow, that is, decreasing the
dilation angle, y, to 15° (e.g., Alejano and Alonso,
2005), resulting in an additional stress drop of 1 to
2 MPa (145–290 psi).

Stress Path
We plot the stress paths for the dog-bone simu-
lations to examine the variations of the stress
tensor during progressive deformation. Follow-
ing Harrison and Hudson (2003), Figure 12
shows the incremental change in pressure stress
p0 ¼ 1=3 ðs1 þ s2 þ s3Þ versus deviatoric stress,
q ¼ ð1=2 ½s1 � s2�2 þ 1=2 ½s2 � s3�2 þ 1=2 ½s1 � s3�2Þ1=2
for Pc = 10–150 MPa (1450–21,756 psi). All
simulations begin at a hydrostatic stress state (q =
0). Retracting the pistons decreases p′ and in-
creases q along a constant linear path during elastic
deformation. The onset of strain hardening, plas-
ticity, and damage causes the stress path to curve
to the left as the deviatoric stress decreases relative
to the pressure change. Ultimate yielding and
macroscopic failure occur as the stress path inter-
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sects the yield surface (Figure 13) and is followed
by a rapid stress drop.

DISCUSSION

Synthesis of Simulation Results

Calibrating Simulated Results to Experimental Data
Amain strength of the present modeling approach
is its ability to generate realistic finite deformation
and to simulate stress-strain and damage curves by
iterative calibration of material parameters. The
final results lie within published ranges for the
Berea Sandstone (Table 1); however, the match
between simulated and experimental results (solid
lines vs. dots in Figures 5, 6) is not perfect. Al-
though it was possible to generate a Berea Sand-
stone rheology to generally fit the experimental
ranges, it was not a simple task to precisely match
both sets of tests results simultaneously. In addi-
tion to rheologic considerations, accurate calibra-
tions of the numerical rheology using laboratory
data depend on (1) capturing relevant global ef-
fects, such as load frame stiffness, which can affect
postfailure behavior; (2) data sampling (e.g., loca-
tion, size, frequency, etc.), for instance, using aver-
aged integration point values from a few elements
to calculate stress and mimic strain gauge read-
ings versus determining stress from piston loads or
Figure 11. Curvature (solid lines) and
damage (dashed lines) versus distance
from the center of the beam at several
stages of deformation, with interpreted
micromechanical process. Damage accu-
mulates slightly off center from the areas
of maximum curvature and localizes in a
narrow equivalent fracture zone.



measuring axial displacement at the sample ends;
(3) unknown environmental factors including fric-
tional contact parameters; and (4) scaling issues,
meshing, and other numerical considerations. De-
spite these limitations, we find the simulations to
be suitable to study the results of complex rheo-
logic behavior as displayed in numerous field ob-
servations and rock mechanics experiments.

Main Simulation Results

Deformation Stages—The simulations capture the
main stages of rock deformation, including (1) on-
set of inelasticity, (2) strain hardening, (3) ultimate
strength, (4) strain softening and brittle failure, and
(5) postfailure finite strain.

Inelasticity Onset—Under confining pressure, inelastic
deformation initiates within the regions of lowest
compressive stresses as early as 0.1% strain.

Stiffness Reduction—Strain-hardening initiates with
the onset of inelasticity with a shown stiffness
reduction of 10 to 15% before tensile fracturing
(e.g., time points preceding Figure 9A). Fractured
zones display a stiffness reduction of 20% or more
(Figure 9B–D).

Damage Pattern—The simulated damage patterns
resemble those of the rock mechanics tests. The
four-point beam configuration displays multiple
fractures that initiate at the beam’s extension side
and extend toward the neutral axis. In the dog-bone
configuration, damage localizes in the center of
the sample and the pattern transitions from simple
to complex with increasing confinement.
Damage Fracturing

Extension under Confining Pressure
The experimental configurations that are analyzed
here, four-point beam and dog-bone triaxial, have
a very important deformation feature: induced lo-
cal extension under global confining pressure. This
condition is likely to develop in many field situa-
tions, for example, fault-fold systems (Reches and
Johnson, 1978), dike emplacement and hydrofrac-
turing (Delaney et al., 1986), and fault tip zones
(Vermilye and Scholz, 1999). The present and pre-
vious simulations (e.g., Lyakhovsky et al., 1997),
as well as microstructural analyses (e.g., Lockner
et al., 1992; Katz and Reches, 2004), show intense
damage development in the regions of localized
extension that commonly leads to macroscopic
failure. We refer to this process as damage frac-
turing, and its product is damage fractures. The
damage fracturing process is analyzed below by
linking the known rheological parameters in the
simulations and the simulated damage features to
Figure 12. Stress paths plotted in the p′ −
q space for the dog-bone configuration,
where p0 ¼ 1/3 (s1 þ s2 þ s3) (com-
pression negative convention) and
q ¼ (1/2 [s1 � s2]

2 þ 1/2 [s2 � s3]
2

þ 1/2 [s1 � s3]
2)1=2. All tests begin at

q = 0 and increase in q while decreasing
in p′ during elastic deformation (straight
line). During plastic yielding (curved,
marked by arrows) q drops relative to p′.
Ultimate failure occurs on intersection with
the yield surface (not plotted). The num-
bers above each test curve give the con-
fining pressure in MPa.
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Figure 13. Yield surfaces plotted
in principal stress space and cen-
tered around the hydrostatic stress
axis, s0. (A) Mohr-Coulomb yield
surface showing tensile and com-
pressive meridians (TM and CM),
defined by the octahedral shear
stresses in tension and compres-
sion toctT and toctC, and the Lode
angle (q). (B) Barcelona yield sur-
face. The curvature is adjusted to
range between minimum depen-
dence on the intermediate prin-
cipal stress (e.g., Mohr-Coulomb)
or full dependence (e.g., Drucker-
Prager, a circular cone). The
biaxial stress state is labeled and
graphed in C. The uniaxial com-
pressive and tensile strength
parameters for the models UCS
and UTS are labeled, as well as
the biaxial strengths.
the observed stress-strain relations and fracture
patterns in the experiments.

Early Damage Distribution in Fresh Rock

Experiments— In the beam experiments,Weinberger
et al. (1994) described two modes of tensile yield-
ing: minor early stage and major late stage frac-
turing. They distinguished the early-stage fractur-
ing as the lower bound of the tensile strength and
the ultimate stress as the upper bound, where large
fractures were associated with a major stress drop.

Simulations—Early-stage damage is controlled by
stress-induced yielding and the onset of inelasticity
(top Figure 7) as manifested by the continuous
strain hardening.Damage evolves slowly and stably
(dotted lines, Figures 5, 6). We note that, in the
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simulated stress-strain curves plotted in Figure 5,
small stress drops representing local fracture events
were not distinct as in the experiments; however,
some minor events do appear.

Late Propagation of Highly Localized Damage Zones
The coalescence of major fractures within a perva-
sively damaged region controls unstable late-stage
deformation and failure. Thus, the active failure
criterion reflects the preconditioned state of a dam-
aged rock with degraded strength.

Experiments—From the beam experiments, it was
interpreted (Weinberger et al., 1994) that the early
fractures propagated stably from the tensile sur-
face, whereas the late-stage fractures propagated
unstably toward the beam neutral surface and van-
ishing tensile stresses.



Simulations—Late-stage propagation is controlled
by an inelastic strain evolution during the early
stage that preconditioned the extension zone for
failure (note blue-green damage zone in Figure 9).
Preconditioning damage also forms ahead of the
fracture tip, where it controls the propagation di-
rection of the fracture as it grows into less stressed
zones. Figure 9 further shows that when the frac-
tures are isolated (widely spaced), fracture prop-
agation paths are linear and continuous (Figure 9A,
B). However, with advanced fracturing, damage
zones link, leading to complex fracturing and cross-
cutting patterns (Figure 9D). The stage is associated
with a global failure of the beam, late strain soft-
ening, and follows a major stress drop.

Are Damage Fractures Shear or Tensile Fractures?
Traditionally, shear and tensile failures are defined
by the stress state on the failure surface starting with
the works of Coulomb (1773) and Griffith (1921).
Thus, application of the relevant failure criterion,
for example, the Coulomb criterion, analytically
predicts the orientation of an idealized fracture
with respect to a given stress tensor (e.g., Anderson,
1951). Damage fractures are different; their ini-
tiation and propagation depend on both stress and
strain fields and are controlled by several nonlinear
and partly interdependent parameters, for exam-
ple, volumetric strain, tensile stresses, loading his-
tory, and strain history. Lyakhovsky et al. (1997)
analytically determined the complex relations be-
tween these parameters for a series of cases with
homogeneous loading and found a good agreement
with the macroscopic experimental data of stress
and strain. However, the shapes and orientations of
damage fractures under nonhomogeneous load-
ing can be determined only numerically. For ex-
ample, Lyakhovsky et al. (2001) studied damage
in a layered crust subjected to basal horizontal
shear, in which the upper part has elastic damage
rheology. They determined the damage and frac-
turing patterns in this nonhomogeneous system
bynumerical simulations that delineated a nontrivial
fault structure, the shape of which depends strongly
on the rate of healing. Similarly, in the present
analysis, a nontrivial network of damage fractures
developed in both the simulation of the four-point
beam (Figure 9D) and dog-bone experiments
(Figure 10). Most of the deformation associated
with these damage fractures is likely tensile, yet
they are not simple smooth tensile fractures. We
will explore in detail the morphology and nature of
damage fractures in part 2 (Busetti et al., 2012) of
this study.

APPENDIX 1: FINITE ELEMENT DAMAGE
AND CONSTITUTIVE MODEL

Damage Formulation

We used a damage model (Lubliner et al., 1989; Lee and
Fenves, 1998) included in Abaqus (Simulia, 2010a, b) that
applies the concepts of deformation modulus (E) and stiff-
ness reduction, and uses the damage parameter, d, as a di-
mensionless approximation for stiffness degradation to scale
the true stress. In the initial stage, D = D0, d = 0 (no deg-
radation); and at failure, d = 1, the material is completely
damaged and the effective stress drops to zero.

E0=E0 � D0=D0 ¼ ð1� dÞ ð4aÞ

The incremental plastic strain includes all irreversible de-
formations as well as brittle microcracking damage. Decom-
posing strain into elastic and plastic strain components (e =
ee + ep) gives the stress-strain relationship

s ¼ ð1� dÞD0ðe� epÞ ð4bÞ

The effective-stress concept (here unrelated to pore pres-
sure) is used to degrade the elastic stiffness, which in turn con-
trols the shape of the yield surface. The damage parameter
evolves separately as a function of plastic strain and is tracked
separately for tension and compression damage (Figure 7). The
result is a material that retains directional strength depending
on how it is strained. For example, a region containing micro-
cracks oriented normal to the loading direction is very strong in
compression, but weak in tension. The constitutive equations
couple the evolution of d with plastic strain evolution of the
dissipation potential, d = d (kℵ) (Lubliner et al. 1989):

k@ ¼ 1=g@
Z ep

0
s@ ðepÞdep ð5aÞ

g@ ¼
Z 0

1
s@ ðepÞdep ð5bÞ

To distinguish mode I and II damage, damage dissipation
kℵ is defined separately for compression or tension. The term
gℵ is the normalized dissipated energy during microcracking
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and is set under the uniaxial stress state. For a continuum
framework, gℵ normalizes the energy released during com-
pressive or tensile fracturing (defined by fracture mechanics
theory)Gℵ by a localization size, lℵ (Lubliner et al., 1989; Lee
and Fenves, 1998):

g@ ¼ G@=l@ ð5cÞ

The value of l ℵ is an “objective value” or “assumed as a
material property” (Lee and Fenves, 1998), and in theAbaqus FE
formulation, it appears as an element regularization parameter.
Constitutive Model

The constitutive model incorporates a pressure-dependent
yield criteria, a plastic flow rule, a hardening rule, and dam-
age. The combination of strain softening and plastic damage
permits simulation of extreme localized weakening, where
fractures or fracture zones (depending on the fineness of the
FEmesh) occur wherematerial degrades to zero strength. The
model is based on modifications of classical Mohr-Coulomb
plasticity, as described below.

The onset of yielding that occurs at the brittle ductile
transition in rocks is typically pressure dependent (Murrell,
1965; Brace et al., 1966; Jaeger and Cook, 1976). The Mohr-
Coulomb criterion described this relationship by relating the
shear and normal stress across a plane by the function:

t ¼ msn + c ð6aÞ

where t is the shear stress, sn is the normal stress, m = tan(f)
gives the coefficient of friction and friction angle, and c is the
shear strength or cohesion. Byerlee showed experimentally
that a value of m = 0.6 to 0.8 was a property intrinsic to most
upper crustal rocks. TheMohr-Coulomb criterion (Figure 13A)
assumes that failure does not depend on the intermediate prin-
cipal stress, yet Mogi (1973) and Reches and Dieterich (1983)
showed that this assumption is not necessarily valid in the gen-
eral case. By assuming that the yield surface is fully dependent
on the intermediate principal stress, sets toct is constant for all
rotations of q, as stated by the Drucker-Prager criterion, where
the shape of the yield surface is a cone that openswith increasing
mean stress. The Drucker-Prager failure surface is a pressure-
dependent variation on the vonMises criterion and is given by

J1=22 ¼ k + 3aI1 ð7aÞ

where a and k are material constants, and the stress invariants
in terms of the principal stresses s1, s2, and s3 and the mean
stress s0 are

I1 ¼ s1 + s2 + s3 ¼ 3s0 ð8aÞ

J2 ¼ 3s0 � I2 ð8bÞ

I2 ¼ s1s2 + s2s3 + s3s1 ð8cÞ
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We use the modified yield surface of Lubliner et al.
(1989), which combines positive features of both the Mohr-
Coulomb and Drucker-Prager models. Figure 13B shows the
Barcelona model yield surface (Alonso et al., 1990). The
Drucker-Prager surface (equation 7a) fits within the form

FðsÞ ¼ 1=ð1� aÞð½3J2�1=2 +aI1Þ ð9aÞ

By adding dependence on the largest stress smax and assign-
ing two additional parameters, b < smax > and g < smax > to
equation 9a, the Drucker-Prager circle can be modified to re-
duce the dependence of the intermediate principal stress and
establish tensile and compressivemeridians.Thus, the formpre-
sented by Lubliner et al. (1989) and Lee and Fenves (1998) is

FðsÞ ¼ 1=ð1� aÞð½3J2�1=2 + aI1 + b <smax >�g
<�smax>Þ ð9bÞ

where (Abaqus manual; Simulia, 2010b)

a ¼ ð½sb0 � sc0� � 1Þ=ð½2sb0 � 2sc0� � 1Þ;0 � a � 0:5

ð9cÞ

b ¼ ðsc0=st0Þða � 1Þ � ð1+ aÞ ð9dÞ

g ¼ 3ð1� KcÞ=ð2Kc � 1Þ; 0:5 < Kc � 1:0 ð9eÞ

The uniaxial compressive and tensile yield strength are
given by sc0 and st0 and can be taken directly from experi-
mental data. The biaxial tensile strength sb0 is approximately
1.3% less than the uniaxial tensile strength (Lee and Fenves,
1998), yielding typical values of 0.08 ≤ a ≤ 0.12 and 1.10 ≤ b
≤ 1.16 (Lubliner et al., 1989). TheKc is the ratio of the length
of the tensile to compressive meridians for a given pressure,
that is, controlling the dependence on s2. For Kc = 1, b and g
drop out, leaving the original DP function:

Kc ¼ ðpJ2ÞTM=ð
p
J2ÞCM at a given p ð9fÞ

where p = I1/3 = s0, and TM and CM are the tensile and com-
pressive meridians.

This constitutive model has a few useful qualities for our
purposes. First, it accommodates a broad range of rock types
that were previously modeled by Mohr-Coulomb or Drucker-
Prager failure. Second, in modeling new rock types from ex-
perimental data, particularly in reservoir applications where
core is limited, it is convenient to use uniaxial failure and stress-
strain data for calibrations. Third, the model is implemented in
the commercial FE software Abaqus, which can be used for a
wide range of geologic problems.

APPENDIX 2: FRACTURE ENERGY EQUIVALENCE

A brief point of clarity is helpful regarding fracturing from
a classical fracture mechanics theory compared with the



continuum damage method used here. The fracture mechanics
approach (Griffith, 1921) and subsequent refinements (e.g.,
Barenblatt, 1962; also see Busetti, 2009) are useful for de-
scribing the growth of discrete cracks propagating from initial
flaws. Continuum damage theory is well suited when describ-
ing the global averaged behavior of fracture networks (e.g.,
smeared crack models) (Bazant and Oh, 1983; de Borst and
Nauta, 1985;Mazars and Pijaudier-Cabot, 1989) or, locally, the
evolution of microcracks (e.g., Steinmann et al., 1994; Mazars
and Pijaudier-Cabot, 1996). The present work fits the latter
perfectly but also expands to model discrete fracture growth
(Busetti, 2009; part 2, Busetti et al., 2012). Thus, note that the
two theories are thermodynamically equal according to the
equivalent crack concept (Mazars and Pijaudier-Cabot, 1996),
which states that there exists a damage zone that is equivalent to
a discrete fracture and vice versa. In the present formulations,
this manifests in the normalized dissipated energy term gℵ. The
energy consumed by forming all of the microcracks in a volume
is equivalent to decohesion of singular cracks with surface area
Ad:

Z
V
�YddV ¼ �G _Ad ð10aÞ

where Y is the damage energy release rate, d is the damage
parameter increment, and −G = Gf is the fracture energy re-
lease rate. On the left side, the damaged area (or volume) is
calculated directly using the energy density function. Follow-
ing Mazars (1986), an equivalent crack, Ae, is attained from
equation 10a:

Ae ¼
R
V

RDðxÞ
0 �Ydddx

Gf
ð10bÞ

where dd(x) represents evolution of the damage at a point, x.
The total damaged area then reflects the summation of the
area comprising all equivalent cracks over a volume, V, which
is the definition of the energy density function, r. This equiva-
lence relates continuum and discrete fracture theory, but also
offers a means for comparison between numerically predicted
damage and the damage observed in experiments and quanti-
fied using other stiffness reduction models.
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