Reverse drag: Host rock deformation during slip along existing faults

Oded Katza and Ze’ev Rechesb

aGeological Survey of Israel, 30 Malkhe Yisrael Street, Jerusalem 95501, Israel
bSchool of Geology and Geophysics, University of Oklahoma, Norman, OK 73019, USA

(Received 15 March 2005 and in revised form 22 June 2006)

ABSTRACT

Faults are typically weaker than the surrounding host rocks, hence it is anticipated that loading a faulted rock body will cause slip along existing faults while the fault-bounded blocks should remain undeformed. We present here field, experimental, and numerical observations that profoundly deviate from the above concept. The field observations are from the Negev (southern Israel), on the western side of the Dead Sea rift, and are related to the intra-plate deformation. We found that (1) the host rock along existing faults may undergo significant deformation during slip along these faults; (2) the syn-slip strain may have the opposite sense of shear with respect to the sense of shear along the fault (commonly known as “reverse drag”); (3) the strain of the host rock adjacent to the faults increases with increasing fault slip; (4) this strain is restricted to a region extending 5–10% of the fault length on each side of the fault, and it decreases non-linearly with distance from the fault; and (5) the above deformation features were observed in host rock of elastic, viscous, or plastic rheology.

1. INTRODUCTION

Fault-zones and their surroundings are enriched in many secondary structures that are related to faulting, for example, microcracks, gouge zones, joints, secondary faults, shear zones, and flexures (e.g., Aydin and Johnson, 1978; Suppe, 1985; Chester and Logan, 1986; Lyakhovsky et al., 1997; Vermilye and Scholz, 1998; Katz et al., 2003). The present study addresses one of the more puzzling structures associated with faults: flexed planar rock bodies close to faults. These flexures are commonly known as “fault drag”, (Davis and Reynolds, 1996), “reverse drag” (Hamblin, 1965; Reches and Eidelman, 1995), or “flanking structures” (Passchier, 2001).

The development of flexures close to faults was clearly displayed in the experiments of Freund (1974). The initial configuration of the experiments included plasticene cakes with a set of pre-cut faults and continuous linear markers traced at 60° to the faults (Fig. 1a). These cakes were subjected to 2D pure-shear shortening as high as \(-0.5\) (Fig. 1b). During the deformation, the initially linear markers were displaced by slip along the faults and were flexed adjacent to the faults (e.g., points marked by R in Fig. 1b). The flexure opens gradually away from the faults until the markers approach linear shape, as portrayed schematically in Fig. 1c. Figure 1c displays three flexed layers (thick solid lines on both sides of the fault), and the original, planar layers prior to flexing (dashed thin lines on the right block). The spatial association of the flexure with the fault and the symmetry of the flexures on both sides
of the faults indicate that the flexure is genetically related to the slip along the fault.

The genetic relations, however, are puzzling. In the view of Fig. 1c, the sense of slip along the fault is left-lateral (black arrows) as is apparent from the sense of separation. Consider now the sense of shear that is needed to flex the layers from planar shape (thin, dashed lines) into the flexed shape (thick curves). The simple kinematic relations indicate that right-handed shear (gray arrows) is needed to flex the layers into their current shape. This observation implies that the rocks at the immediate proximity of the faults underwent shear sense that is opposite to the sense of shear associated with the slip along the fault. Following previous works (e.g., Hamblin, 1965), we refer to this phenomenon as “reverse drag”.

In this study, we first present evidence for reverse drag along faults within the quartz-syenite intrusion of the Ramon area, southern Israel. We continue with the analysis of the geometry of the reverse drag, and investigate the mechanism of its formation through comparison with other field, experimental, and numerical cases. We emphasize the timing of reverse drag with respect to the faulting and its relation to the rheology of the host rocks.

2. REVERSE DRAG ALONG FAULTS IN GEVANIM DOME, SOUTHERN ISRAEL

The geometry of the studied faults

The N–S-trending fault set, mapped and analyzed within the quartz-syenite intrusion by Katz et al. (2003), consists of linked and segmented faults, 1–100 m long, with a right lateral displacement ranging from few millimeters to over a meter. The deformation features across the faults were zoned (following Caine et al., 1996) into a central fault core with a width of 0.001 of fault length, through a damage zone to the protolith with no fault-related deformation at a distance of 0.05–0.06 of fault length. The fault core consists of breccia and is highly sheared (up to 500% strain). The damage zone consists of tensile and shear microfractures and reveals competence reduction of 30–50% (studied using a Schmidt hammer). A marked absence of intragranular distributed tensile microcracks was observed in microscopic analysis of core samples close to the above faults (Katz et al., 2003) as well as in laboratory samples loaded to failure (Katz, 2002).

The current analysis focused on two faults of the N–S fault set that are marked GF2 and GF3 (after Katz et al., 2003). The sense of shear is right-handed as apparent from the sense of separation; the sense of shear that is needed to flex the layers from planar shape (thin, dashed lines) into the flexed shape (thick curves) is right-handed (gray arrows).
The mapped trace of GF2 is about 7.5 m long with a clearly exposed northern tip and a poorly exposed southern one (Fig. 2a). GF2 displays four segments, 1.2 m to 2.6 m long with local trends from 350° to 010°. Right-lateral slip along GF2 (measured using offset fault-normal fracture—Fig. 2b) increases from zero at the northern tip to an approximately constant value of 19.0 ± 3.0 mm along its central part. The fault zone of GF2 is 1 mm to 20 mm wide, with several portions of brecciated, crushed host rock. GF3 is an order of magnitude longer than GF2, with an exposed trace of 100 m (probably longer) and general trend of NNW (Fig. 3a). GF3 consists of at least ten segments with lengths of 2 m to 38 m, local trends of NNE (015°) to NNW (340°), and measured slip magnitude of 25 cm to 125 cm (Katz et al., 2003). The fault zone width of GF3 is up to 0.5 m, and consists of two major breccia zones up to 15 cm wide and a few additional narrow breccia zones (Fig. 3b).

Shear strain of the fault-bounding blocks

The study area is cut by many quasi-planar, sub-vertical fractures with a general E–W trend (Katz et al., 2003). Fractures of this set were displaced and flexed due to slip along the N–S-trending faults like GF2 (Fig. 2) and GF3 (Fig. 3). We measured the flexed traces of some of these fractures in the field in a two-step procedure. First, we aligned a thin thread to the fracture trace on both its sides (x axis in Fig. 4), and then we measured the deviation of the fracture trace from the linear thread as a function of distance from the fault ($v(x)$ in Fig. 4). The flexed fracture traces are assumed to have been linear and continuous prior to faulting, and thus the measured deviations could be used to calculate the continuous shear strain in the blocks. Three flexed traces of fractures were measured across GF2 (marked with gray arrows in Fig. 2a) using the above technique. Fault GF3 is much larger than GF2, and the associated fracture flexing extends to a larger distance. We measured here one flexed swarm of fractures that extends to distances of tens of meters. This swarm is 10–20 cm wide and the measurement was conducted by using an EDM total station system to map the position of its central line.

The measurements are presented in the coordinate system of Fig. 4, where x and y are fault-normal and fault-parallel axes, respectively, $v(x)$ is the fault-parallel measured deviation from a reference line that is normal to the fault, and $2W$ is the width of the noticeable deviations for a fault of length L (Fig. 5). Figure 5a is a line drawing of the measured deviations $|v(x)|$ of the three fracture traces across GF2 (thick, solid lines on both sides of the fault). At distances of 0.2–0.4 m away from the fault, the deviations from linearity are negligible, and the line deviation increases non-linearly towards the fault. The deviation $|v(x)|$ of fracture traces across GF2 reaches values of 4–11 mm at the fault, equal to half the local slip (Fig. 2b). The deviation $|v(x)|$ of the displaced fracture swarm across GF3 (Fig. 5b) displays similar relations but with larger dimensions. The deviation vanishes at distances of 4–6 m away from the fault, and it gradually increases towards the fault to a maximum deviation of 0.4–0.75 m at the fault. Thus, the width over which the trace is distorted, $2W$ in Fig. 4, is ~0.5 m for GF2 and up to 10 m for GF3 (Fig. 5).

The flexed traces measured in the field can be fitted by a curve of the form

$$|v(x)| = a \times \exp(b \times |x|) + c \quad (1a)$$

where a, b, and c are constants; a is approximately the displacement at the fault, and c is a correction factor for the reference line (because the measured fractures or swarm of veins are not necessarily normal to the fault). An example of the curve (eq 1a) is plotted as a dashed curve in Fig. 5a. If we assume that the observed flexure was formed by simple shear, γ, parallel to the fault, then the magnitude of this simple shear can be calculated from the relation

$$\gamma = \frac{\delta v}{\delta x} \quad (1b)$$

Applying this relation to the flexure curve of eq 1a yields the simple shear magnitude as a function of distance from the fault

$$\gamma(x) = a \times b \times \exp(b \times |x|) \quad (1c)$$

The calculated simple shear values for the four measured flexed fractures are plotted in Fig. 6.

Probably the most striking feature of the deviated fracture traces of Fig. 5 is their reverse sense of shear with respect to the shear along the fault. The shear that is needed to flex the E–W fracture traces from an initial reference line [$v_F(x) = 0$ for all x] into the current shape is a left-handed shear (gray arrows in Fig. 4). This sense of shear is opposite to the right-lateral shear along the associated fault GF2 or GF3. Following our definition in the Introduction (Fig. 1c), the flexed traces from Gevanim dome are field examples of reverse drag.

3. TIMING, HOST-ROCK RHEOLOGY, AND MECHANISM OF REVERSE DRAG

The above field observations of reverse drag raise several questions: What is the time of the reverse
Fig. 2. Gevanim Fault #2 (GF2) (a) Map, 1:10 mapping scale, displaying fault trace and E–W fractures (reproduced from Katz et al., 2003); marked by gray arrows are the E–W fractures used to measure fracture distortion near the faults. (b) Displacement along GF2 from offset E–W fractures, plotted with respect to distance from northern fault tip; Roman numerals indicate locations shown in (a).
Fig. 3. Gevanim Fault #3 (GF3). (a) Fault trace mapped at 1:500 scale using EDM Total Station. Right lateral displacements are marked. (b) Map, 1:10 mapping scale, displaying fault trace (reproduced from Katz et al., 2003). E–W fractures marked by gray arrows are the ones used to measure fracture distortion near the faults (legend in Fig. 2a). Note offset of groups of E–W fractures, i.e., group d is displaced 0.65 m to group d’ on the western segment and again 0.45 m to group d” on the eastern segment; additional displacement of 0.15 m is distributed between the segments.
dragging: prior to faulting, during fault propagation, or during slip along an existing fault? What is the effect of host-rock rheology on this phenomenon (note that Fig. 1 displays ductile plasticene, whereas Fig. 5 displays brittle rocks at shallow depth). Further, what is the mechanism that allows for contrasting senses of shear to develop next to each other? Some of these questions can be answered by the physical modeling and numerical simulations outlined below.

Reverse drag in laboratory experiments

Odonne (1990) ran a series of experiments with thin plates of wax (70 cm by 45 cm and 1.1 cm thick) subjected to plate-parallel shortening under room conditions. The plates were pre-cut by a 25-cm-long fault that was oriented at 30° to the maximum shortening. A rectangular network of lines parallel to the plate margins was marked on the plate surface prior to loading (Fig. 7a). The shortening of the plate generated shear and normal stresses along the existing fault and these stresses caused slip with maximum value of 65 mm (Fig. 7a). This slip occurred while the slipping fault did not propagate into the solid wax that surrounded both its tips. The rectangular network marked on the plate was distorted uniformly at a distance from the fault and nonuniformly very near the fault (Fig. 7a, b).

The distortion of the network lines close to the fault indicates right-lateral shear (white arrows in Fig. 7a) while the fault itself displays left-lateral slip (black arrows in Fig. 7a). In other words, the network displays reverse drag similar to that of Figs. 1 and 5.

While these results of Odonne are apparently the clearest experimental observations of reverse drag, a similar deformation style was observed in other experiments. Freund (1974) tested the deformation of a faulted block of plasticene that was subjected to pure-shear boundary conditions with maximum shortening as high as –0.5 (Fig. 1). During deformation the faults slipped, rotated, and deformed into a sigmoidal shape (Fig. 1b) but did not propagate into the plasticene matrix. Reches and Eidelman (1995) analyzed the deformation of the network marked on Freund’s samples. They noted the occurrence of local reverse drag in at least five sites in the experiment, with faults initially oriented at 30° to the maximum shortening (Fig. 1b). Doblas (1990) examined the strain at the proximity of faults that were precut into samples of wax and also noted the development of reverse drag.

These cited experiments have some central properties in common. First, all the faults were cut into the samples prior to the applied deformation. Second, these faults did not propagate into the matrix around them. Third, the samples were made of ductile materials that can accommodate large amounts of strain; for example, the longitudinal maximum strain was –0.44 in Odonne (1990) and –0.5 in Freund (1974). The first two points clearly indicate that the reverse drag forms along existing faults and it does not belong to either the pre-faulting stage or to the propagation stage. The last point is related to the effect of the rheology: Is reverse drag restricted to large deformation of ductile materials? The rheology effect is examined in the next section.

Reverse drag in numerical models

Reches and Eidelman (1995) analyzed the deformation along existing faults with finite element calculations. Their models are for rectangular elastic-plastic plates that include planar faults with friction \(\mu = 0.0, 0.5, 1.0 \). The results for these calculations are plotted in Fig. 8 as normalized fault parallel displacement versus normalized distance. The calculated flexed lines of Fig. 8 are almost identical in sense and relative magnitude to the above presented field observations of Gevanim dome (Fig. 5) and the experimental results of Odonne (Fig. 7). Reches and Eidelman also showed that the intensity of the reverse drag in the proximity of the “weak” fault (\(\mu = 0.0 \)) is larger than the reverse drag along a “strong” fault (\(\mu = 1.0 \)) (Fig. 8).
Fig. 5. Line distortion across GF2 and GF3; coordinates defined in Fig. 4, dashed horizontal line in the x coordinate is a reference line. (a) Three field measured profiles of fracture traces across GF2 (locations in Fig. 2); shown is fault-parallel line displacement, $v(x)$, with respect to initial position; thin dashed line on left side of the plot is an exponential regression curve (eq 1a, where a is 9.04, b is –0.02, and c is zero) calculated for one distorted trace (uppermost) on the western side of the fault. (b) A distortion profile measured across GF3; diamonds are points measured on a fracture swarm with EDM Total Station (locations in Fig. 3). Displacement exaggeration of $v(x)$ is the same in (a) and (b); negative/positive x values indicate distance west/east of the fault and negative/positive $V(x)$ values indicate southward/northward fault-parallel displacement.

Grasemann and Stuewe (2001) used the finite-element method to simulate line deformation in the proximity of planar structures such as fault-zones, shear bands, and dikes embedded in a viscous matrix. The calculations were for fault-zones that are 100 times less viscous (weak fault) or 100 times more viscous (strong fault) than the viscous matrix. The numerical results clearly indicate that “reverse drag” develop only along the “weak fault” models (fig. 5a in Grasemann and Stuewe, 2001).

Another type of rheology was used by our dislocation calculations of the fault-normal displacements across a fault in a linear-elastic medium. The model includes a vertical dislocation within an elastic half-
50 Israel Journal of Earth Sciences Vol. 55 2006

Fig. 6. Reverse drag strain calculated from distorted line at the proximity of GF2 and GF3. The GF2 results (lower curves) are the average of the three analyzed fracture traces (heavy line) with one standard deviation (two thin lines); coordinates are defined in Fig. 4.

The forgoing discussion of the reverse drag leads to three deductions. First, as the reverse drag is opposite to the sense of fault slip, this shear cannot be related to the pre-faulting damage. Second, a striking similarity exists between the reverse drag observed in Gevanim faults and the reverse drag documented along faults embedded in viscous and plastic plates (Fig. 7 and corresponding text). We thus deduce that the rocks in the damage zone of Gevanim faults (Katz et al., 2003) underwent a significant amount of strain during and after the faults were established. It is likely that the accommodation of this large strain was facilitated by the reduction of the rock competence by 30–50% in the damage-zone, as demonstrated in Katz et al. (2003). Third, the numerical simulations of Reches and Eidelman (1995) and Grasemann and Stuewe (2001) indicate that reverse drag is restricted to slip along faults that are significantly weaker than the host rocks.

Finally, we can identify the evolution of the fault-related deformation in Gevanim dome in the Ramon area. Katz et al. (2003) found no evidence for extensive pre-faulting deformation, and proposed that the pre-faulting deformation is limited to shear microfractures observed in the damage zone, which ranges to a fault-normal distance of 0.05–0.06 of the fault length (L). Then, during the faulting stage, the propagating faults generated highly localized deformation in the process zone, 0.001 L wide, manifested primarily as micro-breccia and high shear in the fault-core. Finally, the post-faulting slip along the existing, weak faults generated the reverse drag, as determined for faults GF1 and GF3 (Fig. 5).
ACKNOWLEDGMENTS

This paper is dedicated to the memory of Dr. Nachman Schulman, the Structural Geology teacher and M.Sc. advisor of the second author (Z.R.). Nachman combined encyclopedic knowledge and a didactic approach that made him a critical listener and an outstanding teacher. Thanks, Nachman.

This study was partially supported by United States-Israel Binational Science Foundation grant 1998-135, and by the Geological Survey of Israel. We thank Gerhard Oertel and Amotz Agnon for constructive reviews that significantly improved the quality of this manuscript.

REFERENCES

Erickson, L. 1987. A three-dimensional dislocation program with application to faulting in the Earth. Applied Earth Science Department, Stanford University, California.

