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[1] The evolution of stress-induced damage and the eventual brittle failure are
experimentally analyzed for Mount Scott granite of Oklahoma. We quantify the
damage intensity in two methods and directly compare model predictions and actual
damage. The 14 samples of the medium-grain-size granite were loaded triaxially at
dry conditions, room temperature, and under 41 MPa confining pressure.
Microfractures were mapped in five samples, and the majority of them (80%) belong
to two groups: tensile microfractures trending subparallel to the loading axis and shear
microfractures trending 11�–40� off the loading axis. The tensile microfractures
dominate the low-stress stage, and they remain intragranular with a stress increase.
The relative density of shear microfractures increases with increasing stresses, and
they formed elongated, intergranular zones of coalescing microfractures. We compared
two independent values of damage intensity: (1) the macroscopic, experimentally
measured reduction of the deformation modulus and (2) the expected reduction of this
modulus calculated with several damage models for the density of the mapped
microfractures. Our fracture density data best fit the model of noninteracting cracks of
Kachanov [1992]. INDEX TERMS: 8010 Structural Geology: Fractures and faults; 8020 Structural

Geology: Mechanics; 8030 Structural Geology: Microstructures; KEYWORDS: brittle, failure, damage,

microfracture, shear, nonlinear
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1. Introduction

[2] Loading of brittle rocks leads to the development of
distributed damage long before the rock fails unstably. This
damage was used to explain a range of phenomena: reduc-
tion of seismic wave velocity [Nur and Simmons, 1969],
seismic anisotropy [Scott et al., 1994; Crampin,
1994], reduction of elastic moduli [Budiansky and
O’Connell, 1976; Kachanov, 1992; Lyakhovsky et al.,
1997a, 1997b], and rock failure [Ashby and Sammis,
1990; Reches and Lockner, 1994]. Theoretical analyses of
damage characteristics are based on fundamental principles
[Lyakhovsky et al., 1997a, 1997b; Turcotte et al., 2003]
and on physical features like microfractures [Sayers and
Kachanov, 1995; Kachanov, 1992; Crampin, 1994]. Damage
intensity can be evaluated by indirect, acoustic emission
analysis [Cox and Meridith, 1993], or by direct, micro-
structural observations of deformed rocks; for example the
analyses of microfractures and dilational microcracks
[Hadley, 1976; Tapponnier and Brace, 1976; Kranz,
1979; Reches and Lockner, 1994]. Typically, these micro-
fractures are smaller than the grain size [Hadley, 1976],
and they are often quasi-uniformly distributed prior to
faulting [Lockner et al., 1992]. Local, nonuniform distri-

butions of microfractures are apparently related to fault
nucleation and growth [Reches and Lockner, 1994]. To the
best of our knowledge, there was no attempt to compare
theoretical damage parameters (e.g., microfracture density
of Kachanov [1992]) that are determined from experimen-
tal stress-strain relations, and the corresponding, actual
density of microfractures that can be measured indepen-
dently in the stressed rocks. It is apparent that such
comparison is essential for testing theoretical models and
usage of their predictions [Crampin and Sayers, 1994].
This quantitative comparison between parameters derived
from damage models and direct observations of
microscopic damage is the central objective of the present
study.
[3] We conducted a series of triaxial experiments with

brittle granite samples and determined two independent
indicators of the stress-induced damage. The first includes
rheological parameters (deformation modulus and volu-
metric strain) that were monitored during the triaxial
loading; these parameters are the macroscopic expressions
of the internal, distributed damage. The second indicator
includes the distribution, orientations and intensity of the
microfractures mapped in the deformed samples; these
parameters are the physical manifestation of the same
damage. We start by outlining the experimental procedures
followed by descriptions of the macroscopic rheology
and microstructural mapping. These observations are
then analyzed in terms of damage and failure models.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B01206, doi:10.1029/2002JB001961, 2004

1Also at Geological Survey of Israel, Jerusalem, Israel.

Copyright 2004 by the American Geophysical Union.
0148-0227/04/2002JB001961$09.00

B01206 1 of 13



Finally, we discuss the effects of damage evolution on the
failure mechanism.

2. Experimental Procedure

2.1. Mount Scott Granite

[4] We used samples of Mount Scott granite, MSG, of
Wichita Mountains, southwestern Oklahoma. The MSG has
a porphyritic texture with ovoid anorthoclase phenocrysts in
a matrix of alkali feldspar and quartz, and it includes small
amounts of hornblende, biotite and iron oxides [Price et al.,
1996]. It is a fine-grained to medium-grained rock with
mean grain size of 0.9 ± 0.2 mm and dry density of
2645 kg/m3. The tested samples are from an unaltered and
only slightly fractured core drilled at depth of about 50 m
(details by Price et al. [1998]).
[5] The mechanical properties of MSG of this core were

determined by Katz et al. [2001] in a series of 13 uniaxial
and triaxial loading-to-failure tests under confining pressure
up to 66 MPa. The Young’s modulus increases, linearly,
from 75 GPa for the uniaxial tests, to 82 GPa at 66 MPa
confining pressures, and the Poisson’s ratio is 0.26–0.31 at
low confining pressure and it decreases to about 0.21 with
increasing confining pressure. The determined Coulomb
strength of MSG is [Katz et al., 2001]

s1 ¼ 270þ 8:7s3 in MPað Þ ð1aÞ

t ¼ 46þ 1:31sN in MPað Þ: ð1bÞ

[6] The patterns of failure surfaces vary with the increasing
confining pressure. Axial splitting with few major fractures
and numerous minor cracks dominated the uniaxial tests.
Under the lower confining pressures of 14–28 MPa, the
fractures display a diffuse pattern of a few major faults and
numerous smaller cracks, whereas under confining pressures

of 41–66 MPa fewer cracks appear along with the major
fault. The angle between the normal to the major faults and
the direction of the maximal compressive stress (s1), mea-
sured on the faulted core samples, is 68�–75�.

2.2. Experimental Setup

[7] The tests were performed on 25.4 mm diameter
cylinders drilled into the field core (45.5 mm in diameter)
and parallel to its long axis. The tested samples have a
length-to-diameter ratio of 2.5–3.9, and perpendicularity
�0.005 radians. A ‘‘dog bone’’ epoxy structure was added
to the specimen ends to fit it to the 38.1 mm diameter of the
loading end pieces. Samples were oven-dried (110�C) for at
least 24 hours. Heat shrink tubing was used to jacket the
specimen. We used a 69 MPa pressure vessel (SBEL model
RC10) and the axial load was supplied by a stiff (9 � 109 N/
m), servo-controlled hydraulic load frame (MTS model 315)
with a 2669 kN actuator. Stroke and confining pressure
intensifiers were controlled using a MTS microprofilers
model 458.91. Load was monitored using an internal load
cell at the lower part of the load frame. Axial displacement
of the core was monitored by using two LVDTs attached to
the end pieces, and the lateral displacement was monitored
by using a chain extensometer (MTS model 632.92B-05) at
the middle of the core height.
[8] All tests were performed under confining pressure of

41 MPa (Table 1), for which the Coulomb strength is US =
586 ± 16 MPa (equation (1)). The experimentally measured
differential stress, (s1 � s3), is replaced by its normalized
value, NDS (Normalized Differential Stress):

NDS ¼ s1 � s3ð Þ=US ¼ s1 � s3ð Þ=586: ð2Þ

The NDS values at failure in the present experiments range
between 0.96 and 1.05, reflecting the inherent inhomo-
geneity of the samples and the deviations from US.

Table 1. Experimental Stress-Strain Relationsa

Test
Specimen

Length, mm
Hold Time,b

min
Hold Stress,c

MPa
Failure Stress,

MPa
Maximum
NDSd E,e GPa ne Comments

101 66.9 613 1.05 70 0.18 load to failure
102 63.5 95 601 1.03 74 0.21 load hold
103 93.8 595 1.02 72 0.22 load to failure
104 93.7 61 613 528 1.05 77 0.17 spontaneous failure
105 99.0 180 467 0.80 72 0.22 cycle 1

636 1.09 74 0.29 load to failure
106 96.1 1.25 592 517 1.01 73 0.22 spontaneous failure
108 100.2 180 505 0.86 80 0.20 load hold
109 98.1 180 546 0.93 72 0.18 load hold
110 94.5 0.03 564 561 0.96 73 0.19 spontaneous failure
112 90.9 573 0.98 72 0.21 load to failure
113 96.1 180 563 0.96 70 0.20 load hold
114 96.6 180 518 0.88 72 0.21 load hold
115 93.4 360 534 0.91 74 0.21 load hold
116 97.1 180 460 0.78 74 0.22 load hold
117 89.4 180 318 0.54 71 0.21 load hold
123 95.4 180 334 0.57 71 0.22 load hold
124 76.0 556 0.95 71 0.18 cycle 1

562 0.96 68 0.22 cycle 2
657 1.12 67 0.26 load to failure

125 83.2 180 546 0.93 70 0.20 cycle 1
617 1.05 68 0.27 load to failure

aThe results of seven tests (107, 111, and 118–122) are not included in the analysis due to technical problems during the experiments.
bTime elapsed from start of stroke holding to unload or to failure.
cMaximum stress at the start of holding.
dNormalized differential stress at hold point or at failure (equation (2) in text).
eCalculated before the onset of dilation.
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[9] We performed 14 load-hold tests and each test con-
sists of five steps: (1) confining pressure loading at a
constant rate of 0.023 MPa/s; (2) axial loading to a
preselected stress that ranges from NDS = 0.54 to NDS =
1.05 (Table 1). Axial shortening was at a strain rate of �1
� 10�5 s�1. (3) Once the preselected stress was achieved,
the specimen was held at a constant stroke for up to 6
hours. Eleven of the samples did not fail during the hold
time and three failed spontaneously (Table 1). (4) After the
hold period, the samples were unloaded by first reducing
the axial stress to the confining pressure and then decreas-
ing both stresses at the loading rates; (5) three of the
unfailed samples were cyclically loaded up to failure after
the hold period.

3. Macroscopic Experimental Results

3.1. Strain-Stress Relations and the
Deformation Modulus

[10] Figure 1 shows the typical stress-strain curves of
the present experiments. It displays several stages that
were recognized previously [Wawersik and Brace, 1971].
Stage I, at the range of 0 < NDS < 0.15, includes the
nonlinear stress increase associated with cracks closure.
Stage II, at 0.15 < NDS < 0.40, displays apparently linear
elastic curve. Stages III and IV start at NDS 	 0.4 (Cci,
crack initiation stress [Martin and Chandler, 1994]) and
NDS 	 0.85 (Ccd, crack damage stress [Martin and
Chandler, 1994]), respectively, are characterized by first

stable (stage III) and then unstable (stage IV) stress
increase associated with crack growth and dilation. Stage V
is the failure stage of NDS 	 1.0 with initial stable stress
decrease followed by unstable stress drop.
[11] The stress-strain curve is analyzed in terms of the

deformation modulus, D:

D ¼ d s1 � s3ð Þ=de; ð3aÞ

where e is the axial strain. The parameter D is the local slope
of the stress-strain curve and it is equivalent to Young’s
modulus, E, of the recoverable, elastic strain. Unlike E, the
deformation modulus may also include permanent, inelastic
deformation that is attributed to pervasive stress-induced
damage. To remove temporal noise, the D values are
calculated as the derivative of least squares regression fit by
a six-order polynomial to the experimental stress-strain
curve. The cyclical reloading (Table 1) indicated that E does
not change significantly during reloading to NDS < 0.95 and
the Poisson’s ratio n increases with cyclic reloading (based
on four observations).
[12] Figure 2 presents D curves of five tests with holding

stresses of NDS = 0.54–1.01 (the last failed spontaneously)
and of one test that loaded to failure. The D curves of the
other tests are similar and they were omitted for clarity. At
stresses below NDS � 0.1, the D variations are inconsistent;
even though D is expected to increase due to cracks closure,
it decreases in a few tests (101, 106, 125) (Figure 2). All
tests display a distinct maximum of

Dmax ¼ 74 
 3 GPa ð3bÞ

at NDS = 0.19 ± 0.06 (Table 2). The D values decrease for
stresses of NDS > 0.19. The decrease rate is modest up to
the transition stage of NDS = 0.81 ± 0.03 when D
decreases at an accelerated constant rate until failure at

Figure 1. Stress-strain relations of test 101 that are typical
for the present experiments (compressive strain is negative).
The stress axis is marked by NDS (normalized differential
stress, equation (2)); the curves are for axial strain, total
volumetric strain and crack (inelastic) volumetric strain
(CVS, equation (4)). The curves display several stages
marked following Wawersik and Brace [1971]: I, nonlinear
stress increase associated with cracks closure; II, quasi-
linear elastic stage; III, nonlinear stress increase associated
with crack growth and dilation; IV, failure stage with
increase of crack growth; and V, failure. Cci is the crack
initiation stress where dilation begins; Ccd is the crack
damage stress where failure initiates. Solid diamonds
present the maximal NDS of each test in the series.

Figure 2. Deformation modulus, D, (equation (3a)) as a
function of normalized stress (NDS) for six tests (117, 105,
125, 113, 106, 101) covering the loading range of NDS =
0.54–1.01. The results of the other eight tests are similar
and are not shown for clarity. Maximum, the stage in which
D attains its maximum value, Dmax; Transition, stage in
which D reduction is accelerated.
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NDS = 1.0 ± 0.05 (Figure 2). The deformation modulus at
the transition is 63 ± 4 GPa. The modulus just before
failure in samples loaded to failure is not well constrained;
it is less than 50 GPa and in some samples even less than
30 GPa.
[13] The samples were subjected to load-hold loading

with holding periods up to 6 hours. All 11 samples with
maximum loading of NDS < 0.96 did not fail during the
hold periods while the three samples loaded with NDS �
0.96 failed spontaneously (with the exception of test 102).
It appears that NDS 	 0.96 is an apparent threshold for
spontaneous failure.

3.2. Crack Volumetric Strain (CVS)

[14] The macroscopic effect of growth and dilation of
microcracks can be evaluated by the crack volumetric strain,
CVS. The CVS is the inelastic strain manifested as the
difference between the total experimental volumetric strain,
(eV)experimental, measured during axial loading and the elastic
volumetric strain, (eV)E for this stage [e.g., Martin and
Chandler, 1994]:

CVS ¼ eVð Þexperimental� eVð ÞE: ð4Þ

[15] The elastic volumetric strain during loading is

eVð ÞE¼ s1 � s3ð Þ 1� 2nð Þ=E ð5aÞ

because from Hooke’s expression for the elastic volumetric
strain,

eVð ÞE ¼ s1 þ s2 þ s3ð Þ 1� 2nð Þ=E; ð5bÞ

one has to subtract the elastic volumetric strain due to initial
compaction by the confining pressure,

eVð ÞE;confining¼ 3s3 1� 2nð Þ=E: ð5cÞ

[16] Following others [Nur and Simmons, 1969; Martin
and Chandler, 1994], we interpret the CVS as reflecting
microcrack opening. A curve of CVS is shown in Figure 1
and it also displays the four steps of Figure 1: Stage I, CVS
decreases due to crack closure; stage II the apparent
elastic loading, no change in CVS; stages III and IV,
CVS increases nonlinearly due to growth and dilation of
microcracks.
[17] Figure 3 presents two forms of CVS values. In the

first, a single CVS value is determined for each sample by
using its E and n. The values are calculated for the stress at
holding period in the stable tests (solid symbols in Figure 3)
or for the stress just before failure for the failed tests
(open symbols). The second form presents the continuous
variations of CVS during a single test (test 106) (curve
in Figure 3). Several important features can be noted in
Figure 3. First, the CVS values of the individual tests agree
well with the continuous curve of test 106 for the range of
NDS � 0.95, and it increases monotonously for NDS �
0.95 according to the empirical relations

CVS ¼ 4 � 10�6e6:2NDS; ð6Þ

reaching a value of CVS 	 0.0015 at NDS = 0.95. Second,
for NDS > 0.95, the CVS is poorly constrained within the
range of 0.001 < CVS < 0.005. We interpret this observation

Table 2. Experimental Deformation Modulus Results

Test

Plateau Values
(Maximum Deformation

Modulus)a
Transition Stage of the
Deformation Modulusb Maximum Stress

(NDS)c
Deformation Modulus

at Failure, GPaNDS GPa NDS GPa

101 0.17 71 0.83 60 1.05 29
102 0.83 60 1.03 45
103 0.82 56 1.02 19
104 0.79 65 1.05 41
105 0.15 74 0.80

0.59 73 1.09 32
106 0.24 74 0.83 69 1.01 36
108 0.24 81 0.80 64 0.86
109 0.15 73 0.83 60 0.93
110 0.05 76 0.77 61 0.96 49
112 0.25 74 0.81 61 0.98 48
113 0.17 72 0.75 61 0.96
114 0.27 74 0.84 59 0.88
115 0.22 78 0.79 60 0.91
116 0.15 80 0.78
117 0.17 72 0.54
123 0.21 74 0.50 68 0.57
124 0.15 73 0.95

0.76 65.1 0.96
0.80 65 1.14 11

125 0.12 72 0.84 58 0.93
0.27 69 0.82 66 1.05 37

aPlateau values are for the stage when the Deformation modulus reaches its maximum value (Figure 2, see text).
bTransition stage refers to the stress in which the reduction rate of the Deformation modulus increases (see the transition from gentle slope to steep slope

in Figure 2).
cStress values are presented as NDS (equation (2), see text).
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as indicating the poorly controlled volume increase
associated with the failure stage.

4. Microstructural Analysis

[18] The microstructural analysis focuses on the mode,
dimensions, density and distribution of stress-induced
microfractures in the deformed Mount Scott granite sam-
ples. The main objective is to understand the relationships
between the microdamage described in this section and the
rheological parameters described above and the theoretical
damage models that are outlined later. To achieve this goal
we mapped in detail the microfracture damage in four
samples of MSG subjected to load-hold testing with max-
imum NDS values of 0.57, 0.88, 0.96 (unfailed) and 0.96
(failed), as well as one unstressed sample (samples 123,
114, 113, 110 and 157, respectively). The tests show
negligible CVS increase during the hold time when
NDS < 0.96, and thus the damage accumulated during the
hold period is ignored.

4.1. Mapping Methods

[19] The deformed samples were molded in epoxy resin
after unloading and standard thin sections were made paral-
lel to their long axes and at the central part of the cylinders
(edges were excluded). In the faulted specimen (110), the
thin section was also normal to the fault surface. The
microstructural mapping was conducted by simultaneous
manual digitization on the scanned computer image of the
thin section (�150 magnification) and visual examination
of each fracture on a petrographic microscope (�40–
�200 magnifications). We mapped only linear features that

display fracture characteristics: (1) some opening that indi-
cate dilation and/or slip discontinuity (unlike grain bound-
aries that are sharp and tight); (2) continuity of the features
along their trend (in contrast to the discontinuous appearance
of fluid inclusion traces); (3) cross-cutting of grain bound-
aries. Segmented fractures were carefully examined for the
nature of linkage between segments. Merged segments were
mapped as one long fracture whereas separated segments
were mapped as few separate fractures. The orientation
change between segments did not affect this assessment.
Hadley [1976] and Moore and Lockner [1995] treated a
segmented fracture with intersegment orientation change of
more than 20� as separate fractures. The shortest resolvable
fractures were about 0.01 mm long whereas the longest
mapped fractures were about three orders of magnitude
longer. SEM images with magnification of �40–�370
(pixel size 0.002–0.0002 mm, respectively) were used
for selected regions (Figure 4). The digitized micro-
structural data (http://earth.es.huji.ac.il/reches/Publications/
katz_2003_data.xls) are used to generate fracture maps,
damage contour maps and microfracture orientations rose
diagrams (Figure 5). We believe that the current approach of
separate evaluation of each lineament is unbiased and
complete.
[20] The microfracture density was calculated as the

cumulative length of all mapped microfractures per unit
area (mm/mm2 units). We calculated the mean microfracture
density for the five maps in Figure 5, as well as the local
density in 20–30 subregions for each of the maps; the
subregions are 25 mm2 in size.

4.2. Mode of Microfracturing

[21] The deformed specimens display two dominating
microfracture groups: Group A with fractures trending
subparallel to the loading axis (350�–010� in Figure 5 where
360� is the direction of the loading axis), and group B with
fractures trending in the intervals of 320�–349� and 11�–
40� off the loading axis. These groups account to more then
80% of the mapped fractures (Table 3).
[22] Fractures of group A typically consist of one intra-

granular segment that is less than 5 mm wide and less than
1 mm long (Figure 4a, and lower left of Figure 4d), with
infrequent linkage to other fractures. Their geometry sug-
gests initiation as intragranular fractures and growth to the
boundaries of the host grain. We regard the fractures of this
group as tensile microfractures subparallel to s1. The frac-
tures of group B are up to 10 mm wide with brecciated
material in their core and they are typically composed of a
few coalesced segments (Figures 4b and 4e). In places two
segments overlap to form dilational or contractional jogs
(Figure 4c, center of Figures 4d and 4f ). Occasionally, the
tips of fractures in this group are bent to become subparallel
to the sample axis (Figures 4e–4f ). The fractures of this
group are frequently organized in relatively long, quasi-
continuous bands of coalescing microfractures (e.g.,
Figure 4g). In several conspicuous cases these intergranular
bands are 3–5 mm long (Figures 5c–5e) with spacing of few
millimeters (Figure 5). We conclude that group B includes
shear microfractures that most likely initiated at grain bound-
aries; however, we did not find evidence for displacement
along these fractures. The microfractures that do not fall
into the above two groups are probably reactivated preexist-

Figure 3. Crack volumetric strain, CVS (equation (4)), as
a function of axial stress. Solid diamonds indicate CVS
values calculated for the preselected maximal stress (start of
the holding period); open symbols indicate CVS values
calculated just before failure (for the failed tests). The thin
curve is the exponential regression curve for all data points
(equation (6)); the zigzag curve shows the continuous
variations of CVS during test 106 (the zigzag shape reflect
loading artifacts).
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ing flaws that might coalesce with shear fractures to
facilitate the formation of the long, segmented bands
(Figure 4e).

4.3. Evolution of the Microfracture Patterns

[23] The maps in Figure 5 display the microfracture
pattern from the undeformed sample (Figure 5a) to the
failed one (Figure 5e). By assuming negligible variability
between the original samples, we regard these maps as
indicating the microfracture evolution during a single
experiment. The undeformed sample displays low micro-
fracture density with one preferred direction of fractures.
The fracture pattern in specimen 123 (NDS = 0.57)
displays one set of short, intergranular tensile microfrac-
tures (Table 3 and Figure 5b). Under higher stress, the
relative frequency of the tensile microfractures decreases
(group A in Figure 5c) and the relative frequency of shear
microfractures (group B) increases (Figures 5c–5e and
6a). The microfracture density increases fairly systemati-
cally (Table 3 and Figures 5c–5e), yet there is no
significant change in the relative length distribution of
the microfractures (Figure 6b).
[24] The microfracture density varies in space. For

example, the maximum local density of a single subregion
(25 mm2 in area) is about 2.0 mm/mm2 just before failure
(#113, NDS = 0.96), whereas the mean density of this
sample is 1.11 mm/mm2. The failed sample (#110, NDS =
0.96) does not show higher density and its maximum local
density of a single subregion is 1.8 mm/mm2 (http://earth.
es.huji.ac.il/reches/Publications/katz_2003_data.xls). We
thus conclude that the crosscutting fault did not induce
significant additional microfractures to the host rock, and
that 2.0 mm/mm2 is the critical microfracture density
before faulting. Finally, specimen 110 that was loaded to
NDS = 0.96 and failed, includes a 2 mm wide fault with two
large, linked segments (Figure 5e). The fault core is made of
breccia that is highly crushed in its center and less crushed
in its margins (Figure 4f ).

5. Damage Analysis

5.1. Theoretical Derivations

[25] Kachanov [1992] presented several models that
predict the reduction of the effective modulus of an elastic
solid due to multiple distributed cracks. This reduction is
assumed to be the sum of the contributions of all cracks
where the crack density is quantified by r, a dimensionless
parameter that in two dimensions is defined as

r ¼ 1=Að Þ�L2; ð7Þ

where A is the representative area and L is half the crack
length and � indicates summation of all cracks in the area A.
Our damage measurements were done on two-dimensional
(2-D) thin sections and these 2-D damage data cannot be
converted into 3-D damage values (see Appendix A). Thus
the present analysis is based on 2-D approximations as
discussed in Appendix A.
[26] In this section we briefly outline three damage

models and compare their predictions with our observations.
The first is the model with 2-D array of ‘‘noninteracting
cracks’’ that are randomly distributed in an isotropic matrix.

Figure 4. SEM images of microfractures in the MSG
(locations in Figure 5). Maximum shortening is north-south;
the scale bar is 100 mm in Figures 4a–4c, 400 mm in Figure 4d,
and 600 mm in Figures 4e–4f. (a) Intragranular, tensile
(axis parallel) fracture in quartz (darker area); note the
opening along the northeastern grain boundary, whereas the
southern remained closed (specimen 114, NDS = 0.88).
(b) Shear microfracture with linking segments (specimen
114, NDS = 0.88). (c) Shear microfracture with two
overlapping segments and development of wing cracks
(upper center) (specimen 110, NDS = 0.96 (spontaneous
failure)). (d) Shear microfracture showing the initial stage of
breccia development; note the two shorter tensile fractures
in the lower left (specimen 110, NDS = 0.96 (spontaneous
failure)). (e) Shear and tensile fractures in quartz grain
(upper half ) and open cleavage and grain boundary
fractures in plagioclase (lower half ). The tip of the shear
fractures rotates to the stress direction (I) (specimen 110,
NDS = 0.96 (spontaneous failure)). (f ) The main fault
cutting specimen 110 (right side of image), consisting of
breccia with tensile and shear fractures to its left. (g) A band
of shear microfractures (specimen 110, NDS = 0.96
(spontaneous failure)) that locally follows the grain
boundary (I), displays segments coalesce (II), and activates
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Kachanov [1992] showed that the modulus reduction of this
model behaves as

E0=E0ð Þ ¼ 1= 1þ prð Þ; ð8aÞ

where E0 is the ‘‘effective deformation modulus’’ (see
Appendix A) at a given stage and E0 is the effective
deformation modulus at the linear stage of the stress-strain
curve. Kachanov [1992] further reviewed other approxima-

Figure 5. Microstructural maps showing microfractures in the five mapped thin sections. The thin
sections of the deformed samples (Figures 5b–5e) are oriented parallel to Z, the long axis of the
specimen, that is the direction of s1. The thin section of the undeformed sample (Figure 5a) is normal to
the Z axis (note the marked axes). The rose diagrams are of the microfractures length-azimuth relations in
area-weighted 5� sectors for Figure 5b–5e. The s1 axis is the north axis of the associated fractures maps;
the groups A and B on the rose diagrams include the sectors of 320�–349� and 11�–40� off the loading
axis that correspond to the groups of tensile and shear microfractures, respectively (see text). (a) Specimen
157, unstressed. (b–d) Specimens 123, 114, and 113, maximum NDS of 0.57, 0.88, and 0.96,
respectively. (e) Specimen 110, loaded to NDS = 0.96, followed by spontaneous failure.
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tions of the effective deformation modulus. The second
model is the ‘‘self consistent scheme’’ of Budiansky and
O’Connell [1976], that considers an isolated crack in a
medium with an effective (reduced) modulus. This model
predicts the following for 2-D randomly distributed cracks
[after Kachanov, 1992]:

E0=E0ð Þ ¼ 1� prð Þ: ð8bÞ

In this approximation the interactions always lead to
reduction of the overall modulus. The reduction effect is
not necessarily justified as the interactions could lead to
shielding and hardening. Equation (8b) predicts that the
modulus vanishes as the density approaches the cut off
density of r = 1/p when the material disintegrates and fails.
Budiansky and O’Connell [1976] suggested that the
effective modulus at r = 1/p is very small but not zero.
Kachanov [1992] used computer simulations of 2-D arrays
to suggest that (E0/E0) � 0.5 for r = 0.3.
[27] A third model presented by Kachanov [1992] is the

‘‘differential scheme,’’ which also considers one isolated
crack within an effective matrix, but the calculations are
done incrementally with increasing by small dr steps and
recalculation of the effective modulus of the matrix at each
step. This scheme generates the following for 2-D randomly
distributed cracks:

E0=E0ð Þ ¼ e�pr: ð8cÞ

There is no cut off density here and similarly to (8b) the
interactions always lead to softening.

5.2. Comparison of Model Predictions and
Experimental Observations

[28] We first note that E0, the ‘‘effective deformation
modulus’’ of Kachanov [1992], is equivalent to the local
slope of the stress-strain curve and thus it is identical
to the deformation modulus D of the present analysis
(equation (3a)). This implies that

D=Dmaxð Þ ¼ E0=E0ð Þ; ð9Þ

where Dmax is defined in equation (3b). We now use
equations (8a)–(8c) to calculate the theoretically expected
ratio (E0/E0) for the damage r measured in the five

samples and then compare the calculated ratios with the
experimentally measured ratios of (D/Dmax) for the same
samples. For this comparison, the damage intensity r is
calculated by applying the summation equation (7) to all
microfractures according to their individual length in our
microstructural mapping (Figure 5). While other measures
of the fracture length can be used (e.g., cumulative length
in binned length intervals by Hadley [1976] and Reches
and Lockner [1994]), we did not use binned data as there
is no standard procedure to select the bins and their
width. The method used here does not depend on the
binning procedure.
[29] Figure 7a displays the calculated modulus ratios

(E0/E0) for the five samples (Table 3) according to the three
models (equation (8)) versus the experimentally measured
ratios of (D/Dmax). It should be noted that no adjusting factor
was used to scale the modulus ratios, and the marked solid
line indicates perfect agreement between measured and
calculated ratios. We first note that the ‘‘noninteracting
cracks’’ model (equation (8a)) predicts the smallest intensity
of modulus reduction (solid squares), whereas the ‘‘self-
consistent scheme’’ (equation (8b)) predicts the largest
modulus reduction (solid diamonds). Second, for r < 0.06
the modulus ratio (E0/E0) predicted by the three models is
smaller than the measured (D/Dmax). We think that this
deviation indicates the high sensitivity to mapping errors
in samples with low damage intensity, and the fact that slight
damage can be observed even in undeformed samples.
Third, for r > 0.06, the (E0/E0) ratio of the ‘‘noninteracting
cracks’’ model (solid squares) is in very good agreement
with the measured (D/Dmax) ratio. The other two models
overestimate the modulus reduction. In summary, from the
three examined models, the ‘‘noninteracting cracks’’ model
fits best the observations.
[30] Further the ‘‘noninteracting scheme’’ of Kachanov

[1992] appears to be valid even for high crack densities
(r � 0.2) that are expected to induce interactions (speci-
mens 110, 113). Similar results are found with computer
experiments of Kachanov [1992] and Davis and Knopoff
[1995], that ran high density (r > 0.2) synthetic 2-D crack
arrays. They suggested that shielding and amplification
interaction effects are canceling each other [Kachanov,
1992] and that each crack is subjected to a stress field that
is approximately the field at infinity even with high densities
of cracks [Davis and Knopoff, 1995].

Table 3. Results of Microstructural Damage Mappinga

Test
Maximum

Stress (NDS)b
Map Area,c

mm2

Number of Microfractures (All Groups) for
Each Length Interval, mm

Microfracture
Densityd

Microfracture Type (Fraction of
Total Length)e

0.03 0.1 0.3 1 3 10 #/mm2 mm/mm2
Group A
(Tensile)

Group B
(Shear) Others

157 0.00 500 0 1 34 84 15 2 0.27 0.17
123 0.57 1000 1 21 372 503 28 0 0.92 0.36 0.46 0.38 0.16
114 0.88 1075 0 1 138 345 63 3 0.51 0.29 0.26 0.61 0.13
113 0.96 875 0 57 1274 1152 102 2 2.96 1.11 0.40 0.45 0.15
110 0.96 875 0 35 507 681 115 8 1.54 0.76 0.38 0.46 0.15

aSee text.
bStress at start of holding period.
cArea of microstructural mapping on the thin section.
dNumber of fractures divided to the map area (#/mm2) or cumulative fracture length divided to the map area (mm/mm2).
eCumulative length of the microfracture in each group normalized by the cumulative length of all microfractures. The raw microstructural data set can be

obtained at http://earth.es.huji.ac.il/reches/Publications/katz_2003_data.xls.
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[31] We can use the ‘‘noninteracting cracks’’ model to
calculate damage intensity for the experiments by rearrang-
ing equation (8a) and using equation (9):

r ¼ Dmax=D� 1ð Þ=p: ð10Þ

Figure 7b displays the damage intensity calculated for all
tests by using equation (10) and the experimental (D/Dmax) at
the corresponding maximum NDS (diamonds). Also plotted

are the exponential best-fit curve of these data points (thick
curve), the continuous r for test 106 (thin curve), and the
mapped r in the five samples of Figure 7a (open squares).
This plot indicates a strong nonlinear increase in r toward
failure with r 	 0.20 at NDS 	 0.95 that corresponds to
(E0/E0) � 0.61 (equation (8a)). This value is in agreement
with the experimental values of (D/Dmax) = 0.65 ± 0.02 for
specimens loaded close to failure (113 and 110 in Table 4).

Figure 6. Variations of microfracture characteristics with
loading. (a) The frequency of microfractures length
distribution with respect to s1 axis for the five mapped
samples. The contours indicate the variations of an arbitrary
parameter (the microfracture length (mm) measured at given
angle b for the marked NDS). The calculations are for 10�
intervals; for example, in sample 123 (NDS = 0.57) we
mapped 42 mm of fractures with b = 25� ± 5�, whereas in
sample 113 (NDS = 0.96) we found 120 mm of fractures in
the same angle interval. Note division into tensile (b = 0�–
10�) and shear (b = 11�–40�) fractures and the absolute and
relative increase of shear fractures with stress increase (see
text). (b) Frequency (number of microfractures) fit into
each length interval for specimens 157 (NDS = 0.00), 123
(NDS = 0.57), 114 (NDS = 0.88), 113 (NDS = 0.96), and
110 (NDS = 0.96, and failure).

Figure 7. (a) The relationships between expected modulus
ratio (E0/E0) calculated from the damage intensity (r in
equation (7)) and the experimentally measured values of
(D/Dmax) for the same samples (see text). The same data are
plotted for the three models of equation (8) as marked in the
legend; the solid line indicates exact agreement between
expected and measured values. (b) Expected damage
intensity r in the present tests, calculated for maximum
stress of all tested samples using equation (10) (diamonds),
including the best-fit exponential curve (thick curve, r =
0.0006 exp (6.11 NDS), R2 = 0.78). Also plotted is the
calculated continuous r for one test (106) (thin curve) and
the observed damage intensity in the five samples (open
squares, same data as solid squares in Figure 7a).
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[32] Lockner et al. [1992] used the S/L parameter to
describe microfracture density, where S is fracture spacing
and L is the fracture length. Reches and Lockner [1994]
proposed that brittle rocks fail when the microfractures
interact in a self-organized fashion that leads to macro-
scopic faulting. They showed that when S/L � 1 the
induced stresses between neighboring fractures is smaller
than 1% of the fracturing stresses and thus the interactions
can be ignored. Reches and Lockner used the data of
Hadley [1976] to show that in undeformed specimens
S/L = 1–4, and in failed specimens S/L 	 0.35, and
estimated that S/L 	 0.5 is the critical value for yielding.
Reches and Lockner [1994] showed that for random
fracture distribution,

S=L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= gL2ð Þð Þ

p
; ð11Þ

where g is the microfracture density in terms of number of
cracks per unit area. We calculated S/L for the five mapped
samples by substituting the measured crack length data
(Table 3) into equation (11), and found that S/L decreases
nonlinearly with stress and it is�1.6 at failure (Table 4). This
relatively high value of S/L at failure (relatively low
microfracture density) suggests that the failure mechanism
of MSG differs from the failure mechanism derived by
Reches and Lockner [1994] (see section 6).

5.3. Critical, Local High Damage Intensity

[33] The underlying assumption in the above analysis is
that the samples deformed uniformly with quasi-uniform
damage distribution, and that a single value deformation
modulus is sufficient to describe the entire sample. This
assumption is examined here. We showed above that
deformation modulus can be estimated from microfracture
density. Thus the fracture maps (Figure 5) can be converted
into maps of model prediction of (E0/E0). This is done by
calculating the local r in 20–30 subregions (each 25 mm2

in size) of the maps (equation (7)), and then using
equation (8a) to obtain the (E0/E0) of the subregions.
Figure 8 presents the contoured maps of this ratio.
[34] Figure 8 indicates that the variability of modulus

distribution (E0/E0) increases with loading. In specimens
113 and 110, the value of E0/E0 < 0.6 dominate most of the
mapped area but several patches of localized damage show
lower E0/E0 values that could indicate local rock failure that
could lead to the failure of the entire specimen.
[35] The modulus maps of Figure 8 show that the samples

are composed of zones that are relatively strong and patches

of degraded, weak rock. When the patches of localized
damage grow and the continuity of the strong matrix is
eliminated, the rock would fail. For example, it is possible
that sample 113 did not fail because a zone of low densitywith
0.7 < E0/E0 < 0.8 crosses the specimen from side to side
(Figure 8d). A different situation appears in specimen 110
where a zone of low E0/E0 < 0.6 cuts the specimen almost top
to bottom and probably enables failure (Figure 8e).

6. Discussion: Failure Mechanism of
Mount Scott Granite

6.1. Failure of Brittle Rocks

[36] It is generally accepted that growth and interaction
of microcracks control macroscopic faulting. One group
of faulting models proposes that a fault grows in the
wake of a process zone that is a finite size region of
high stress concentration at fault tip in which the intact
rock is disintegrated [Cowie and Scholz, 1992; Reches
and Lockner, 1994]. This concept predicts that fault
related damage, mostly tensile microfractures, would be
restricted to the fault vicinity and will decay away from
the fault. Another group of models assumes that a fault
forms due to interaction among many damage points,
mostly microcracks, which formed prior to faulting.
These microcracks are assumed to coalesce when their
density reaches a critical value [Peng and Johnson, 1972;
Horii and Nemat-Nasser, 1985; Ashby and Sammis,
1990; Lyakhovsky et al., 1997a]. This concept implies
that microcracks are not necessarily restricted to the fault
tip, and that the density of microcracks away from the
fault would be comparable to the microcrack density
along the initial fault.
[37] It is also commonly accepted that tensile microfrac-

tures dominate the prefailure damage of brittle, crystalline
rocks, following, for example, the observations of Hadley
[1976], Tapponnier and Brace [1976], Reches and Lockner
[1994], andMoore and Lockner [1995]. As the tensile micro-
fractures form even under high confining pressures, their
formation is attributed to induced tension at the tip of shear
fractures that generates the well-known ‘‘wing crack’’ sys-
tems [Tapponnier and Brace, 1976; Germanovich et al.,
1994; Reches and Lockner, 1994]. While the ‘‘parent’’ shear
fractures are only seldom observed [e.g., Tapponnier and
Brace, 1976; Schulson et al., 1999], the wing crack config-
uration is often used as the main mechanism of tensile
fracturing under compression [Horii and Nemat-Nasser,
1985; Ashby and Sammis, 1990; Germanovich et al., 1994].

Table 4. Microstructural Damage Intensity Parameters

Test
Maximum

Stress (NDS)
Deformation Modulus Ratio
(Experimental) (D/Dmax)

a

Damage Density rb

S/Lc
Group A
(Tensile)

Group B
(Shear) Others Total

157 0.00 1.00 0.050 3.1
123 0.57 0.93 0.019 0.019 0.012 0.051 2.7
114 0.88 0.80 0.014 0.048 0.009 0.071 2.4
113 0.96 0.64 0.063 0.093 0.016 0.172 1.6
110 0.96 0.67 0.060 0.098 0.032 0.190 1.6

aRatio of the modulus at hold point and the maximum modulus (Table 2).
bCalculated using equation (7) by summation of all microfractures (separated to groups) according to their measured, individual lengths.
cCalculated spacing/length ratio using equation (11) for the entire fracture population [after Reches and Lockner, 1994].
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[38] The systematic study of microfractures in the present
study allows us to explore mechanism of failure in Mount
Scott granite, as we do in the sections below.

6.2. Failure by Growth and Coalescence of
Shear Microfractures

[39] We first compare the failure features of Mount Scott
granite with those of the well-studied Westerly granite
[e.g., Hadley, 1976; Lockner et al., 1992]. The mean grain
size of Westerly granite is smaller, about 0.2 mm versus

0.9 mm in MSG. The measured microfracture density is
higher in Westerly granite, and it is about 18 mm/mm2 at
failure [Hadley, 1976], that is, significantly higher than the
2.0 mm/mm2 density of MSG. In the prefaulting stage, the
majority of the Westerly granite microfractures are axial
tensile cracks, and during failure, microfractures with
deviation by 20�–60� from the specimen axis developed
close to the tip of the propagating fault [Moore and
Lockner, 1995]. As a consequence, microfracture density
is twice as high in the fault vicinity than away from the

Figure 8. Expected local values of the deformation modulus (E0/E0) calculated with equation (8a)
for the mapped samples (see text). The contours indicate the (E0/E0) values with hatch on the (E0/E0) =
0.6 contour. (a–e) Specimens 157, 123, 114, 113, and 110. Crosses in specimen 110 are the fault trace
(not included in the modulus calculation).
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fault. On the basis of these observations, the model of
Reches and Lockner [1994] suggests that Westerly granite
fails by interaction of tensile microfractures and fault
induced tensile fracturing.
[40] Apparently, this model cannot explain the failure of

Mount Scott granite. First, MSG has lower microfracture
density that hardly enables interaction (S/L � 1.6, see
above). Second, the high density of microfractures in speci-
mens loaded to failure is not spatially associated with the
fault (Figure 5e). Third, the relative frequency of the micro-
shears increases with stress (Table 3) as well as the damage,
r, associated with them (Table 4, Figure 9). Four, many of
the microshears are arranged in elongated, quasi-continuous
intergranular bands (Figures 4g and 5c–5e), whereas the
tensile microcracks are typically intragranular (Figure 5).
Hence while the initial damage of MSG (for NDS < 0.6) is
equally associated with tensile and shear microfractures
(Table 4, Figure 9), the later damage is dominated by the
intergranular bands of microshears (Figures 4g, 5, and 9).
[41] Following these observations, we envision that the

failure of MSG is controlled by microshears. The axial load
increase leads to increase in relative density of the micro-
shears and their arrangement in elongated bands of coalesc-
ing microfractures (Figures 4g and 5c–5e). Eventually, the
macrofault forms by facilitating the existing, coalesced
microshears; the additional damage generated during the
macrofault propagation is apparently small.
[42] Microshear development is not unique to Mount Scott

granite. Janach and Guex [1980] suggested that under
sufficiently high confining pressure the local tensile stresses
are suppressed and the micro deformation should be domi-
nated by microshears. Escartin et al. [1997] found micro-
shears with negligible tensile fracturing close to the fault
plane in serpentinite rocks loaded to failure under confining
pressure of 50MPa. The failure was accompanied with minor
crack volumetric strain, as microshears generate less volume
change than tensile fractures [Escartin et al., 1997]. The
microshears in the serpentinite use cleavage planes of
serpentine that deviate about 30�–60� from s1; hence, the

fracture energy of shear along the serpentine cleavage is
lower than the other possible fracturing in that rock [Escartin
et al., 1997]. Similar behavior was found for Gevanim quartz-
syenite (southern Israel). This rock lack tensile microcracks
in both naturally faulted samples [Katz et al., 2003] and
triaxially failed samples [Katz and Reches, 2000].
[43] The development of microshears, with or without

tensile microcracks, is not anticipated as the fracture tough-
ness of mode I fractures, KIC, is usually smaller than the
fracture toughness of mode II fractures, KIIC. Yet the obser-
vations mentioned above and in additional analyses
(B. Haimson and C. Chang, personal communication, 2001)
indicate that microshears are too common to be ignored. A
detailed discussion of this topic is the subject of our ongoing
work (O. Katz et al., manuscript in preparation, 2003).

7. Conclusions

[44] The present analysis is focused on damage evolution,
nonlinear rheology, and brittle failure mechanisms in Mount
Scott granite; the main results are outlined below.

7.1. Damage and Strength

[45] 1. The prefailure damage includes shear and tensile
microfractures and their density increases with increasing
stresses. The shear microfractures form intergranular bands
of coalescing fractures whereas the tensile microfractures
are primarily intragranular;
[46] 2. With increasing stress, the rock mechanical quality

undergoes monotonous, nonlinear degradation and the defor-
mation modulus drops to as low as 0.65 its maximum value;
[47] 3. Spontaneous failure occurs above a threshold

stress of about 0.95 the ultimate strength above which the
damage increases nonlinearly even under constant stroke.

7.2. Nonlinear Damage Rheology

[48] The observed microstructure damage and the exper-
imental, macroscopic rheology are integrated for the com-
parison between measured and predicted damage. From the
three examined models, the observed microfracture density
fits best the predictions of the ‘‘noninteracting cracks’’
model in isotropic matrix, derived by Kachanov [1992]
even for high microfracture density (r � 0.2). To the best of
our knowledge, this is the first experimental corroboration
of a stress-induced damage model.

7.3. Failure Mechanisms

[49] The damage inMount Scott granite is quasi-uniformly
distributed and dominated by intragranular tensile micro-
fractures and intergranular microshears. With increasing
stress, the density and damage of microshears increase
and they coalesce to form elongated bands; eventually the
macrofault forms by coalescing the existing microshears
bands. Apparently, the interactions among tensile micro-
fractures do not contribute significantly to the failure of
MSG as was recently observed for other rocks.

Appendix A

[50] A central issue in the present study is the choice of a
suitable reference system for the damage analysis. In triaxial
tests the samples are loaded by axisymmetric, 3-D stress
state with s1 > s2 = s3, and on the other hand, the damage is

Figure 9. The damage intensity r for the present tests
calculated separately for the tensile microcracks (group A),
shear microfractures (group B), and the other microfrac-
tures. Data are shown in Table 4.
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mapped on 2-D thin sections. There is no practical method
to determine the 3-D geometry of the microfractures in the
thin sections as they appear as linear features that cannot be
traced into the third dimension. Two approaches were used
to overcome this limitation. Hadley [1976] assumed that the
microfractures are penny-shaped in three-dimensions and
calculated the 3-D damage by using 2-D measurements.
This assumption however, has no observational or theoret-
ical support for triaxial, axisymmetric loading.
[51] We use here a different approach and analyze the

measured damage and the theoretical predictions in terms of
2-D approximations. The loading conditions applied on a
thin section that parallels the long axis of a triaxial sample is
s1 > s2 = s3, where s1 and s2 (=s3) are within the thin
section plane and s3 (=s2) is normal to it (Figure 5). This
configuration is bounded by the plane-stress state of s1 > s2
and s3 = 0 that is normal to the thin section, and by the
plane-strain state of s1 > n (s1 + s3) > s3, where n is the
Poisson ratio and s1 and s3 are within the section plane.
Using the 2-D approximation allows us to compare directly
between the measured 2-D damage and the predictions of
2-D models (equation (8) [after Kachanov, 1992]).
Substituting our experimental results into Kachanov’s
[1992] equations (1.6) and (2.13) shows that the reduction
of the Young modulus predicted by the plane-stress deviates
by less than 5% from the plane-strain prediction. As this
deviation is small, we used Kachanov’s solution for plane-
stress (equations (8) and (9)), and mark the Young modulus
as E0 to indicate this approximation.
[52] Finally, we believe that future improvements of X ray

CT techniques [Karacan et al., 2001] will allow the determi-
nation of the actual 3-D geometry ofmicrofractures. Once this
happens, assumptions and approximations like those by
Hadley [1976] or the present study could be eliminated.
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