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ABSTRACT 

Reches, Z., 1978. Analysis of faulting in three-dimensional strain field. Tectonophysics, 
47: 109-129. 

Multiple faults, composed of three, four or more sets of faults, have been observed at 
a wide range of scales, from clay experiments to rift valleys. Multiple faults usually are 
explained by multiple phases of deformation. However, in several cases the multiple faults 
develop simultaneously; therefore, they cannot be explained by the common theories of 
faulting. Furthermore, these theories were derived for plane strain, whereas, multiple 
faults are associated with three-dimensional strain. 

An elementary analysis of faulting in three-dimensional strain field is presented here. 
The analysis considers the deformation of an idealized model due to slip along sets of 
faults; the model is subjected to strain boundary conditions. The analysis shows that (1) 
three or four sets of faults are necessary to accommodate three-dimensional strain, (2) 
there is a combination of four fault sets which minimize the dissipation of the defor- 
mation; the orientation of these faults depend on the strain state, and (3) if the resistance 
to slip along these four sets of faults is cohesive, then the stresses which cause slippage 
along them are equal or larger than the yielding stresses of a Tresca rigid-plastic with the 
same cohesion. 

The analysis presented here is too elementary to be directly applied to field observa- 
tions; however, it indicates that multiple faults and rhomboid patterns of faults probably 
form when a body is strained three-dimensionally. 

INTRODUCTION 

One of the most common geologic structures, the fault, which is a surface 
or narrow zone across which differential shearing displacement is accommo- 
dated, still presents some unsolved problems. One of these problems is the 
origin of multiple sets of faults, comprised of three, four or more sets of 
faults which almost certainly formed simultaneously (Oertel, 1965; Malone 
et al. 1975; Aydin, 1977; Reches, 1978). 

Simultaneous faulting on multiple sets is inconsistent with explanations of 
faulting based on stress criteria of failure. Anderson (1951), explained failure 
of rock by Coulomb’s failure criterion, and postulated that faults develop 
if the stresses on certain planes equal the shear strength of the material, For 
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frictionless materials, according to Anderson’s analysis, there are two conju- 
gate sets of fault planes inclined 45 degrees to the direction of maximum 
compression and containing the direction of intermediate stress. For fric- 
tional materials, the two planes are inclined at somewhat smaller angles to 
the direction of maximum compression. Ode (1960) and Varnes (1962) 
extended Anderson’s theory of faulting to include descriptions of strains 
within the material being faulted, which they postulated to behave as a Von 
Mises, rigid-plastic substance. Even the extended theories of faulting, how- 
ever, can account for only two sets of faults. According to the plasticity the- 
ories of faulting, the traces of faults correspond with characteristic directions 
within the plastic material. However, these theories require that the material 
be in a state of plane strain for, otherwise, there are no characteristic sur- 
faces in the material (e.g., Thomas, 1952; Craggs, 1954; Ode, 1960). Thus, 
the standard theories of faulting cannot explain multiple faulting and cannot 
explain how three-dimensional strains can be accommodated by faulting. 

The analysis of faulting presented in the following pages concerns the 
number of fault sets required to accommodate three-dimensional deforma- 
tion of a body containing many faults. The analysis is related to those by 
Taylor (1938) and Bishop (1953), who were concerned with the number of 
slip systems in metal crystals required for an arbitrary deformation. We will 
show that for faults with orthorhombic symmetry in a material with cohesive 
strength, the orientation of faults that minimizes the work done by external 
loads depends upon the strain to which the body is subjected. The analysis is 
incomplete because we say nothing about how the faults developed. How- 
ever, the analysis is complementary to those by Anderson (1951) and Ode 
(1960). They analyzed faulting under stress boundary conditions whereas we 
analyze faulting under strain boundary conditions. 

First we will review descriptions of multiple faults in the field and in 
experiments. Then we will derive the number of sets of faults required for 
two- and three-dimensional strain. Finally, we will relate the orientations of 
faults to the state of strain to which an idealized body is subjected. 

EXAMPLES OF MULTIPLE FAULTS 

Faults have similar patterns in a wide variety of scales and tectonic set- 
tings. For example, rhomboid patterns of fault traces are common in the 
Basin and Range Province, in margins of rift valleys, as well as in cakes of 
clay. Donath (1962) described faults in the Basin and Range Province in 
south-central Oregon (Fig. 1). He indicated that most of the faults dip 
steeply, that some are nearly vertical, and that both strike-slip and dip-slip 
displacements can be recognized on some of the fault surface. Thompson 
and Burke (1974) described the pattern of faults in the Basin and Ranges as 
follows: 

“Individual faults tend to be extremely crooked in map plan and the fault 
pattern is more nearly rhomboid or even rectilinear. Some mountain ranges 
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Fig. 1. Rhomboid pattern of Cenozoic normal faults in south-central Oregon. Bars on 
down thrown side of faults; fault dashed where inferred (from southeast portion of plate 

3, Donath 1962). 

are bounded by echelon faults that strike diagonal to the range. . . Nowhere 
is the fault pattern better exhibited than in the late Cenozoic basalt flows 
of south-central Oregon (Fig. 1, here), but similar patterns are common from 
Nevada to Texas. Moreover, the roughly rhomboid map pattern of faulting 
is characteristic of other regions of present or past crustal extension, such as 
the African rifts, the Rhine graben, the Oslo graben, and the Triassic basins 
of eastern North America.” 

Thompson and Burke (1974) presented several hypotheses to explain the 
patterns, including changes in stress with time, influence of older structures 
and anisotropy. They concluded, however, that the mechanics of the faulting 
must be complex. 

Oertel (1965) apparently first recognized the simultaneous development 
of multiple faults. He described and analyzed small faults developed in experi- 
ments with cakes of clay subjected to three-dimensional deformation. He 
deformed a cake of clay, 9 cm thick, by extending or shortening the cake in 
one direction (X, in Fig. 2). The top and sides of the cake were free surfaces, 
so the cake was subjected to mixed stress and displacement boundary condi- 
tions. Careful strain measurement indicated a three-dimensional strain field, 
with almost constant volume in the clay. Four sets of faults with orthorhom- 
bit symmetry formed in both extension and compression experiments (Fig. 
2). Oertel noted that none of his main observations, including the number of 
sets, the orientations and the slip directions of the faults, could be explained 
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Fig. 2. Faults in clay cake at the end of elongation experiments. View on top of the cake; 
short diameter of ellipse 6.2 cm, bars on down thrown side (drawn from Oertel, 1965, fig. 

6). 

in terms of theories of faulting based on failure criteria, including Anderson’s 
(1951). To explain the fault pattern developed in his experiments, Oertel 
suggested that the interference between the various fault sets controls the 
geometry of the pattern. 

Robin and Currie (1971) described small faults or joints in metavolcanic 
rocks north of Madoc, Canada. They found five sets of fractures with similar 
appearance (Fig. 3). Field evidence indicates that slip occurred primarily 
along three sets of fractures, that the fourth set accommodated minor slip 
and that the fifth set generally accommodated no slip (Fig. 3). Robin and 
Currie (1971) suggested that the five sets of fractures developed as joints in 
response to nonuniform stresses and that shear offsets occurred along the 
fractures later. 

Reches (1977) reported closely spaced faults in sandstone in the Palisades 
monocline, Grand Canyon, Arizona (Fig. 4). Four sets of faults with ortho- 
rhombic symmetry can be recognized, so the fault pattern is similar to those 
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Fig. 3. Joint orientation in metavolcanics, Madoc, Canada. The contours indicate five sets 
of joints marked A to E. Lower hemisphere, equal area net (from Robin and Currie, 
1971). 

Fig. 4A. 



Fig. 4. Ciosely spaced faults in a steeply dipping sandstone layer, Palisades Creek, 
Arizona. A. View on top of layer. B. Side view of same layer (from Reches, 1978). 

developed in Oertel’s clay-cake experiments (Fig. 2). 
Aydin (1977) has observed multiple sets of faults in sandstones at numer- 

ous localities in the San Rafael Desert, Arches National Park, and the Henry 
Mountains, Utah. Cross-cutting relations of members of the various sets indi- 
cate that the sets formed simultaneously. Offsets across the faults indicate 
oblique slip so the faults accommodated three-dimensional strains. 

Malone et al. (1975) detected three faults in a micro-e~thquake swarm 
in Columbia River Basalt in Eltopia, eastern Washington. Using records of 
42 events, they located three fault planes and derived the orientation of the 
principal stress axes from focal mechanisms (Fig. 5). The m~imum com- 
pression axes associated with the earthquakes along the three faults nearly 
coincide (Malone et al., 1975, fig, 14), however, the inferred compression 
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Fig. 5. Faults and slip directions in microearthquake swarm, Eltopia, Washington. Lower 
hemisphere, stereographic net. [(from Malone et al., 1975).] I, fl and III are poles to the 
three faults, S, S,I, and Sl~f are slip directions on the three faults. 

axis is parallel to the bisector of the obtuse angle between two of the three 
faults. 

In each of these examples there are three or more sets of faults rather than 
the two sets predicted by theories of faulting based on failure criteria, such 
as Anderson’s (1951), or on plasticity theory. Furthermore, in all examples 
where gross strain of the rock or clay is known, the strain was three dimen- 
sional, rather than plane strain, as required in the theories of faulting based 
on plasticity theories. The standard explanation of multiple sets of faults is 
that each pair of sets of failure formed separately; during each deformation 
one pair of sets of faults formed, and according to this interpretation, multi- 
ple faulting implies multiple deformation. However, multiple deformations 
can be excluded for each of the examples where the defo~ation history is 
known, as in the experiments by Oertel (1965), the earthquake swarm in 
Washir~~on (Malone et al., 1975), and the faults in the San Rafael Desert, 
Utah (Aydin, 1977). 

An explanation for the simultaneous development of three or more sets of 
faults is needed. We shall discuss some aspects of multiple faulting in the fol- 
lowing pages. 

THE MODEL 

Slip along faults in response to three-dimensional deformation of the 
body will be analyzed for a relatively simple model. The model has the fol- 
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lowing properties: 
(1) Deformation is solely by slip along sets of faults, resulting in simple 

shear parallel to each set (App. I., Fig. 10). 
(2) There is a sufficient density of faults in each set so that the deforma- 

tion of a body containing the faults can be approximated by that of a homo- 
geneous material. 

(3) The resistance to slip along the faults is cohesive, independent of the 
normal stress. 

The model is sufficiently simple so that solutions can be obtained in 
closed form, and the results can be readily understood. Furthermore, as the 
analysis considers strains to be infinitesimal, other types of deformation such 
as elastic, plastic or viscous deformation of the blocks between the faults can 
be superimposed on the deformations produced by faulting. 

Fig. 6. A. Slip on a fault plane. SF is the slip direction, Sa and Sf2 are two independent 
slip directions. The total slip in SF direction can be represented by linear combination of 
slips on Sa and Sf2 directions. B. Slip systems on an octahedral face of aluminum crystal. 
N is the normal to the face, Sr, Ss and Ss are three possible slip directions. 
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NUMBER OF FAULT SETS REQUIRED FOR TWO- AND THREE-DIMENSIONAL 
DEFORMATIONS 

Let us consider the number of sets of faults needed to accommodate 
general, three-dimensional deformation of the ideal model described above. 
The analysis partly follows those by Taylor (1938) and by Oertel (1965). 
First, however, we should clarify the difference between a fault and a shear 
system. The slip direction on a fault, SF (Fig. 6A), can have any orientation 
within the plane of the fault; this direction can be represented by linear com- 
bination of two independent slip directions, SfI and Siz (Fig. 6A). We will 
define a shear system as an independent slip direction, Sf, or SfZ, on a fault 
(Fig. 6A). As the slip within a fault plane can be in an arbitrary orientation, 
SF, then each fault corresponds to two shear systems. Shear systems are 
kinematically equivalent to slip systems in crystals (e.g., Taylor, 1938) (Fig. 
6B). 

The general infinitesimal deformation in three dimensions is: 

D31 032 033 

which can be separated into strain Eij, and rotation Oij : 

Dij= [:!! 4% 1111 +[ill :yI :il] (2) 

where X1, X2 and X3 are Cartesian coordinates. For constant volume defor- 
mation, which is required if deformation is solely due to simple shear along 
faults : 

033 = -PII +D22) (3) 

Thus, there are eight independent components in the deformation tensor eq. 
1. The deformation components can be written as the sum of contributions 
of deformation from k shear systems: 

k 

Dij = C Do i = 1, 2, 3 
j = 1, 2, 3 (4) 

n=l 

where D$ is the contribution of the nth shear system to the total deformation 
of the material. Eq. 4 can be written as: 

k 

Dij = C ~j . in 
i= 1,2,3 

n=l j = 1, 2, 3 
(5) 

where yn is the amount of simple shear along the nth shear system, and q is 
the coefficient for transformation from the coordinates of the shear system 
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Fig. 7. Faults in the ideal model required to accommodate strain boundary conditions. 
Displacement is shown along one fault, however, the parallel faults, in dashed lines, carry 
similar displacements. Figures a’ to d’ show the deformation of an initial rectangular 
parallelopiped (dashed lines), by slip along faults, into a parallelopiped (solid line). a. One 
component of the strain is specified and one fault is required (see text). Note the rotation 
and shear of the boundaries of the model. b. Plane strain with three specified components 
of strain. Note the lack of rotation and shear of boundaries of the model. c. Three-dimen- 
sion strain by slip along three faults. Note the rotation and shear of boundaries of the 
model. d. Three-dimensional deformation with no rotation or shear of the boundaries of 
model. 
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to the general coordinates. Eqs. 5 are a system of eight linear equations. The 
vector y can be considered to be the unknown and the Tij to be the known 
matrix of coefficients: 

[TijI * [ml = Dij 

To obtain a unique solution for y, there should be eight terms, not all zero, 
in each equation. This implies that eight shear systems are sufficient to 
accommodate a general deformation in three dimensions. Further, because 
each fault corresponds to two shear systems, four sets of faults are sufficient 
to accommodate a general deformation in three dimensions. 

However, if less than eight components of the deformation are applied, 
then fewer shear systems will be sufficient to accommodate the deformation. 
Let us demonstrate this conclusion by means of several examples. 

Suppose that plane strain is applied to the body, and that only one com- 
ponent of the applied deformation is specified (Fig. 7a). For example: 

where D is a constant. According to eq. 5 only one shear system of arbitrary 
orientation is required to accommodate the strain field. Figure 7a indicates 
that indeed one system can satisfy the condition. However, it is clear that 
both shear and rotation result from the slip along a single shear system (Fig. 
7a). 

Suppose that the body is again subjected to plane strain, but that the 
applied deformation is such that X1 and X2 are the principal strain axes, and 
no rotation of the boundaries of the body is permitted (Fig. 7b). Thus: 

Dll = E,; D12 = 0; Dzl = 0 

where El is the principal strain, and D*z = -Dll. Therefore, three shear sys- 
tems or two sets of faults of arbitrary orientation are sufficient to accommo- 
date this plane strain. It should be noted that two sets of faults correspond 
to four shear systems and, therefore, one shear system is redundant. 

Similarly, for three-dimensional strain one can distinguish between cases 
in which rotation is unspecified (Fig. 7c), which is analogous to the first 
example above, and cases in which rotations are specified (Fig. 7d), which is 
analogous to the second example above. If we specify only the strain part 
of the general deformation (eq. 6), five shear systems (or three faults) are 
needed to accommodate the strain, as concluded by Taylor (1938). Again, it 
should be noted that three sets of faults include a redundant shear system. If 
we specify both the rotations and the strains, for example if the material is 
confined by rigid boundaries that cannot rotate (Fig. 7d), then eight shear 
systems, or four sets of faults, of arbitrary orientations, are sufficient to 
accommodate the deformation. 
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PREFERRED SETS OF FAULTS 

The analysis of the number of sets of faults and shear systems required to 
satisfy three-dimensional deformation is quite general. The orientations of 
the fault sets required are arbitrary. We can predict orientations of faults in 
simple materials if we make three further assumptions about the material: 
Let us assume that the faults within the material yield if the shear stress 
acting on them is equal to a constant, say 15’. That is, the condition 

IT1 =c 

must be satisfied on each fault set for that set to slip and to contribute to 
the deformation of the body. We could assume that the shear stress required 
to activate a set of faults depends upon the normal stress on those faults, as 
in Coulomb’s law, but this would complicate the analysis unnecessarily for 
this preliminary study of faulting in three dimensions. The second assump- 
tion we will make is that the faults that will be activated are those that mini- 
mize the dissipation of the deformation, that is, that minimize the work 
done by external forces. Similarly, Taylor (1938) postulated that aluminum 
crystals deform along slip systems which minimize the dissipation of energy. 
The sets of faults which minimize the dissipation we will call the preferred 
faults. Finally, we will assume that the principal stress axes coincide with the 
principal strain axes. 

The ideal model of a faulted body contains many closely spaced faults so, 
as indicated in Appendix I, the dissipation associated with slip on one set is: 

w=cy, 

in which 7n is the simple shear across the set. The total dissipation for the 
four sets of faults is the sum: 

w’ = c 5 yn (9) 
n=l 

Because the dissipation depends only on the total simple shear (eq. 9), the 
sets of faults which minimize the simple shear also minimize the dissipation. 

However, we can deduce some important information from the yield con- 
dition stated in eq. 7. The combination of the assumption that the shear 
stress along the sets of faults is equal and that of stress and strain states are 
symmetric requires that activated faults be symmetrical about the principal 
stress axes. For general, three-dimensional deformation, in which there are 
four sets of faults, the faults must have orthorhombic symmetry. Further- 
more, if the axes of principal stress and strain coincide, as was assumed 
above, the simple shear along each set of faults will be the same, y. 

The magnitude of the simple shear for each of the four sets of faults with 
orthorhombic symmetry, according to derivations in Appendix II, is: 
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where: k = E,/E, (lob) 

Y* = y/El (1Oc) 

E3 = -(El + E2) (1Od) 

and E,, Ez and E3 are principal strains. Here NI = cos-’ I!!)~, where eI is the 
angle between the normal to fault set and the axis XI, and Nz = cos-’ eZ 
where e2 is the angle between the normal to the same fault set and axis X2. 

The simultaneous solution of the derivatives 3y*/aN1 = 0 and aT*/aN? = 0 
provides the direction cosines, N1 and N?, of the fault sets which minimize 
the dissipation. The solutions are: 

NI = rt(1/2)“’ S1 = +N, 

NZ = ?(--h/2)“’ Sz = ‘N, 

N3 = f ((1 + k)/2}“‘S3 = ?N, 

for -1 < k =G 0, and: 

NI = +1/2(1 + k)“* S1 = +N, 

N2 = f {k/2(1 + k)}“’ Sz = +Nz 

N3 = +(1/2)“* S3 = fNj 

for 0 < k G 1 where k = E,/E 1. The strain ratio, k, may have any value from 
- to +m. For simplicity we show in eqs. 11 only the solutions for the range 
-1 < k < 1 which implies El > Ez > E + Solutions for the full range of k are 
plotted in Fig. 8. 

The orientations of the preferred faults are functions of the ratio of the 
principal strains applied to the ideal body. The orientations of these faults 
are plotted for several strain ratios in Figs. 8 and 9. 

Figure 8 shows the orientations of the normals to the preferred sets of 
faults with respect to the principal strain axes. Note that there are two pre- 
ferred sets for plane strain: k = -1, k = 0; or k = +=, whereas there are four 
sets of faults for the three-dimensional strain. Figure 9 shows both the sets 
and the corresponding slip directions in their relative orientations. Again, for 
plane strain: k = -1 and k = 0, there are two fault sets with either strike-slip 
or dip-slip, respectively, whereas four fault sets appear for three-dimensional 
strains, with either oblique- or dip-slip. 

We can also derive an expression for the principal stresses required to 
cause slippage along the four sets of preferred faults. According to Jaeger 
and Cook (1969, p. 21), the shear stress, T, on an arbitrary plane is: 
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T2 = (01 - 02)2N7N;z + (u2 - a3)2AQg + (a3 - u,)2iv$v: (12) 

where ul, u2 and u3 are the principal stresses. Substituting eqs. 7 and 11 into 
eq. 12: 

-(01- u2)2h - (u2 - u3)2k(h + 1) + (u3 - u,)2(h + 1) - 4c2 = 0 

for -1 d h < 0, and: 

(13a) 

(ul - u2)‘k/(k i 1) + (a, - u3)2k + ((73 - (~1)~ - 4(k + 1) C2 = 0 

forO< k< 1. 

(13b) 

Equations 13 are the stress conditions which are required for faulting of 
the ideal model. For example, in plane strain, k = 0, the stresses are: 

Iu1- (731 - 2c = 0 (14a) 

which is the yield condition for a Tresca material. In another example, the 
ideal material is subjected to compression in a triaxial test, k = -0.5, and 

fJ2 = u3, so the stresses required for faulting are: 

lu’1--u31 -2c=o (14b) 

Fig. 8. Poles to preferred faults in the three-dimensional strain for various values of lz, 
X1, X2, and X3 are the principal strain axes, k is the ratio of the principal strains, E2 to 
El. Solid lines refer to solutions in eqs. 11, broken lines to solution for the complete 
range of k. 
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Fig. 9. Preferred faults and slip orientations for various values of strain ratio k. The faults 
are shown as triangles intersecting the principal strain axes. Note the coordinates of inter- 
section with the axes. Heavy arrows indicate slip direction. 

as in plane strain. However, for extension in which k = 1 and cst = o2, the 
stresses required for faulting are : 

101 -(Tgl-2fic=o U4c) 
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Equations 13 and 14 show that the stresses required for faulting of the 
ideal model, subjected to strain boundary conditions, are equal to or larger 
than the stresses required to deform the ideal rigid-plastic, Tresca substance 
with the same yield strength, C. 

CONCLUSION 

We analyzed the faulting of an idealized model which accommodates 
strain solely by slip along sets of faults. The model contains many faults in 
each set, and the resistance’to slip along the faults is cohesive. We derived 
three results for the faulting of this model under infinitesimal strain bound- 
ary conditions. 

(1) Three sets of faults of arbitrary orientation are sufficient to accom- 
modate three-dimensional strain. If a rotation field is applied on the model, 
in addition to the strain field, then four sets of faults of arbitrary orienta- 
tion are sufficient to accommodate the deformation. It was also shown that 
two sets of faults are sufficient for plane strain cases. 

By making two assumptions, first, that the activated faults in the model 
minimize the dissipation of the deformation, and second, that the principal 
strain axes coincide with the principal stress axes, we derived two additional 
results: 

(2) Four sets of preferred faults in orthorhombic symmetry are activated 
during faulting of the model. Furthermore, the orientation of the preferred 
sets depends only on the state of strain. 

(3) The stresses required to cause slippage along the preferred sets of 
faults with cohesion C, are equal to or larger than the stresses required to 
deform an ideal rigid-plastic Tresca substance with the same cohesion C. 

The three results of our analysis, concerning the number of sets of faults, 
the orientations of the preferred faults and the stresses required for faulting, 
are different from the corresponding theoretical results of Ode’s (1960) 
and Anderson’s (1951) analyses. Furthermore, we cannot compare our anal- 
ysis with any other faulting analysis because, to the best of our knowledge, 
other analyses were derived for plane strain only. Oertel’s analysis (1965) is 
an exception. It was derived for three-dimensional strain, but it is incomplete 
and predicts the number of sets of faults only for the irrotational case and 
does not predict the orientations of the preferred faults. 

The analysis presented here is too simple to be directly applied to specific 
field or experimental observations. Even so, it provides some insight into the 
patterns of faults described in the introduction. Many of these patterns have 
orthorhombic symmetry (Figs. 2-5), and some carry oblique slip (Figs. 2 
and 3). According to our analysis, such patterns could accommodate three- 
dimensional strain, and they probably formed when such a strain was im- 
posed. Further development of our elementary theory may lead to a better 
explanation for these fault patterns. 
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APPENDIX I 

The objective of this appendix is to derive the dissipation energy due to 
slip along a single set of faults. Let us consider a plate with width b which is 
normal to a set of faults (Fig. 10). The energy dissipated due to slip U, along 
a single fault is: 

where IT I is the shear stress along the fault and A is the surface area of fault. 
In our model the shear stress equals the cohesion C (eq. 7). The average dis- 

Fig. 10. Simple shear associated with slip along discrete faults in a set. The set makes an 
angle /.3 with the plane normal to El, the maximum strain axis. 5’ is spacing, U, average 
slip along a fault. 
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placement on a single fault in a set is (Fig. 10): 

where S is the spacing of the faults and y is the simple shear of the set. Sub- 
stituting eqs. ‘7 and A2 into eq. Al, for the total surface area of all faults in 
the set (Fig. 10) : 

W *=c.y.s.L,.(_J (A3) 

where L is the total length of the faults in the plate and b is the width of the 
plate. The volume of the plate is: 

V=S.L-b (A41 

So the dissipation energy of one set of faults per unit volume becomes: 

W=C.y (A5) 

APPENDIX II 

The objective of this appendix is to derive the orientation of faults which 
minimize the simple shear along them. We consider only deformation due to 
simple shear along sets of faults. The general deformation in the coordinates 
of the set of faults is: 

0 0 0 

dij = 7 0 0 0 

! I 

(A7) 

1 0 0 

where y is the simple shear along the set (Fig. 10). The coordinates are: X1 
normal to the fault plane, XZ normal to X1 - X3 plane, and X3 parallel to the 
slip direction. The standard transformation of deformation from the coordi- 
nate system of the set to the general coordinate system is: 

where 0; is the contribution of the nth set of faults to the general deforma- 
tion, and aik and Ujl are the direction cosines between the two coordinate 
systems. Substituting eq. A7 into eq. A8 yields: 
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where Ni = uPi are the direction cosines of the normal to the fault and Si = 
api are the direction cosines of the slip direction. The total deformation of 
the model is obtained by substituting eq. A9 into eq. 4. 

Let us now consider the strain due to simple shear along four sets of faults 
in orthorhombic symmetry. The symmetry axes of the sets of faults are the 
principal strain axes and the shear along the four sets is equal: 

Yl = 72 = 73 = Y4 = Y (A101 

From the symmetry of the fault pattern, one obtains that: 

N;=~=--N~=-N~=N* S; = $9: =-ST = -+$ = S, 

N;=-~=N;=--N;=N2 S: = -S’, = S; = -+$ z Sz (All) 

N;=p3=N;=N;=N3 S$ = S’, = S”, = S”, = S3 

where w are direction cosines of the normal to the nth fault plane and ,527 are 
the direction cosines of the slip direction. Substituting eqs. A9, AlO, and 
All into eq. 4 yields: 

1 
NV% 0 

Eij = 4y 

i 

O 
O i 

N2S2 0 (A121 

0 0 N3S3 1 

which is the strain tensor as function of the orientation of four sets of faults 
in ortborhombic symmetry. 

From eq. Al 2: 

EII = 4rNS’, 

E22 = ~YNZSZ 
(A13) 

We know that: 

NISI f N2S2 + N3S3 = 0 

or: 

N,S, + N2S2 + (1 -fl -@)“2(1 -ST -S;)1’2 = 0 (A14) 

because the slip direction is in the fault plane. Substituting eqs. Al3 into eq. 
A14, re~an~ng and squaring both sides of the equation yields eq. 10a in 
the text. 
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