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Abstract. A new method to calculate the stress tensor 

associated with slip along a population of faults is derived 

here. The method incorporates two constraints: First, the 

stresses in the slip direction satisfy the Coulomb yield 

criterion, and second, the slip occurs in the direction of 

maximum shear stress along the fault. The computations 

provide the complete stress tensor (normalized by the vertical 

stress), and evaluation of the mean coefficient of friction and 

the mean cohesion of the faults during the time of faulting. 

The present method is applied to three field cases: Dixie 

Valley, Nevada, Wadi Neqarot, Israel, and Yuli 

microearthquakes, Taiwan. It is shown that the coefficieet of 

friction of the three cases varies between g < 0.1 to g = 0.8. 

Further, it is demonstrated that previous stress inversion 

methods implicitly assume zero friction along the faults. 

INTRODUCTION 

The resolution of the state of stress associated with slip 

along a collection of faults, has been the goal of numerous 
studies since the work of Anderson [1942]. Some 

investigations of fault related stresses are based on the 
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symmetry of the measured sets, the magnitude of the dihedral 

angle of the conjugate sets, utilization of known friction 

angles and assumed pore pressure [e.g., Zoback and Zoback, 

1980]. Most faults are oblique slip and many fault populations 

cannot be separated into clear, symmetric sets. Therefore some 

investigations are based on determination of the strain axes of 

shortening and extension associated with the individual faults 

or the entire population [e.g., Arthaud, 1969; Reches, 1976; 

Aydin and Reches, 1980]. This approach is equivalent to the 

P-B-T axes analysis of focal plane solutions [Angelier, 1984]. 

Several stress inversion methods recently derived assume, 

following Bott [1959], that slip along a fault occurs in the 

direction of the resolved shear stress or, equivalently, normal 

to the direction of zero shear stress [e.g., Carey and Bruiner, 

1974; Angelier, 1979, 1984; Armijo et al., 1982; Ellsworth, 
1982; Gephart and Forsyth, 1984; Michael, 1984]. These 

methods determine the orientations of the principal stress axes 

which minimize the angular deviations between the observed 

slip direction along a fault and the direction of the maximum 

resolved shear stress determined from the calculated principal 
stress axes. However, the inversion "..method does not ensure 

that the observed fault planes are consistent with a masonable 

failure criterion." [Gephart and Forsyth, 1984, p. 9314]. To 

overcome this inherent difficulty, Gephart and Forsyth [1984] 
and Michael [1984] determined the reduced stress tensor and 

then inspected whether the failure criterion is satisfied along 
each of the observed faults. 

A new method to determine the state of stress associated 

with slip along faults is presented here. The analysis is based 
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on two constraints: First, the slip along a fault occurs in the 

direction of maximum shear stress (as in previous inversion 

methods), and second, the magnitudes of the shear and normal 

stresses on the fault satisfy the Coulomb yield criterion. This 

method provides the orientations and magnitudes of the 

principal stresses and constrains the coefficient of friction and 
the cohesion of the faults. 

I present below the theory and method of computation, 

apply the method to three field cases and compare the present 

technique with previous methods. 

THEORY 

Approach 

The objective is to determine the stress tensor which fits 

slip along all faults in a measured group. The method is based 

on the following assumptions: 

1. The slip along a fault occurs in the direction of maximum 

shear stress or, equivalently, normal to the direction of zero 

shear stress (as in previous inversion methods). 

2. The magnitudes of the shear and normal stresses on the 

fault satisfy the Coulomb yield criterion, 

Ixl > C + IX o n (1) 

where x is the magnitude of the shear stress in the slip 
direction, C is cohesion, !x is coefficient of friction and o n is 

the normal stress on the fault. No assumption is made about 

the age of the faults: They may be new faults, and then C is 

the cohesive strength of the intact rock and g is the coefficient 

of internal friction, or they may be old, reactivated faults, and 

then C is the cohesive resistance to slip and Ix is the 
coefficient of friction. 

3. The slip event occurred under relatively uniform 
conditions: The cohesion and friction of the measured faults 

can be represented by their mean values, and the faults were 
active under a uniform state of stress. 

The calculations provide a set of stress tensors, each one of 

them being the best fit tensor for a given coefficient of 

friction. The angle between observed and predicted slip axes is 

calculated and is regarded as an estimate of the degree of misfit 

of the solution. One selects the most suitable tensor by 

considering both a reasonable coefficient of friction and a low 

degree of misfit. The advantages of the procedure are 
demonstrated below. 

Formulation 

The known parameters for each fault are fault plane attitude, 

orientation of the slip axis and the sense of slip (normal or 

reverse). These parameters are represented by two unit vectors 
one normal to the fault N i, i= 1, 2 and 3, and the second 
parallel to the slip axis S i, i=l, 2 and 3, where N i and S i are 
the directional cosines in an orthogonal coordinate system, X i 
(Figure 1). In the present paper, X 1 points northward, X 2 

points eastward, and X 3 points downward. 

The geometric relations of directional cosines indicate that 

N12 + N22 + N32= 1 
S12+S22+S32=1 
N1S 1 + N2S 2 + N3S 3 = 0 

(2) 

The unknown stress components are o11, o22, o33, x23, 
x13, and x12. 

Application of the Assumptions to the Known Parameters. 
Given S i as the slip axis and B i is the axis normal to it on the 

fault plane, then B = N x S, where x indicates vector 

multiplication. By following the stress analysis of Jeager and 

Cook [1969, chap. 2] and using the geometric relations of (2), 

assumption 1. becomes 

Xl 

o slip axis • 

Fig. 1. Coordinate system and fault orientation data, 
stereographic projection, lower hemisphere. X 1 points 
northward, X 2 points eastward and X 3 points downward. N i 
and S i are the directional cosines of the normal to the fault and 

the slip axis. 
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(Oll - o33)N1B1 + (022 - o33)N2B2 + x23(N2B 3 + B2N 3) + 
x13(N1B 3 + B1N3) + x12(N1B2 + B1N 2) =0, (3) 

and assumption 2. becomes 

(ø11 - ø33)N1S1 + (g22 - g33)N2S2 + g23(N2S3 + S2N3) + 
x13(N1S 3 + S1N3) + x12(N1S2 + S1N2) (4) 
= C + g[(Ol 1 - ø33)N12 + (ø22 - ø33)N2 2 + ø33 + 
2x23N2N 3 + 2x13N1N 3 + 2x12N1N2]. 

Equation (1) appears here with an equality sign to facilitate 

the formulation of a system of linear equations. 

By writing these two equations for each of the K faults in 

the studied set and after rearrangement of (4), one obtains a 

system of 2K equations. This system is the matrix 

multiplication A x D = F, where A is a 2K by 5 matrix, D is 
a vector of unknowns stresses with five terms and F is a vector 

with 2K terms. The matrix A has the form 

[N1B 111, [N2B2] 1, [(N2B3 + B2N3)] 1, [(N1B3 + B 1N3)11, 
[(N1B 2 + B 1N2)] 1 

[N1B1]k, [N2B2]k, [(N2B3 + B2N3)] k , [(N1B3 + B1N3)] k , 
[(N1B 2 + B 1N2)]k (5) 

[(N1S 1 - gN12)]l, [(N2S2 - gN22)] 1, [(N2S3 + S2N 3 - 
2gN2N3)] 1, [(N1S 3 + S1N 3 - 2gN1N3)] 1 , [(N1S 2 + S1N 2 
- 2gN1N2)] 1 

[(N1S 1 - gN12)]k, [(N2S2 - gN22)] k , [(N2S3 + S2N 3 - 
2BN2N3)]k, [(N1S3 + S1N 3 - 2gN1N3)] k , [(N1S2 + S1N 2 
- 2gN1N2)]k 

where the subscripts 1 and k indicate the parameters associated 

with the first and kth faults, and k ranges from 1 to K. The 
vector D of the unknown stresses has the form 

(o 11 - ø33),(ø22 - ø33),x23,x 13,x 12 (6) 

The vector F has the form 

0,0 ......... (C + go33),(C + go33) .... (7) 

where the first K terms are zero and the last K terms are (C + 

go33). 

The system A x D = F is an overdetermined linear system in 

which A and F are known for the measured fault and slip 

orientations and the selected g and C. The stress vector D can 

be determined by linear algebra methods. The magnitudes and 
orientations of the principal stresses, o 1, ø2 and o 3, can be 

calculated from the stress tensor oij. 

Computation 

The computation was accomplished in BASIC, using an 

IBM-PC computer. The main steps in the program are the 

following: 

1. Selecting the coefficient of friction g; I select a wide 

Fig. 2. Tectonic features in the Dixie Valley area, Nevada. Heavy solid lines indicate fault traces active in the 
1903, 1915, and 1954 earthquakes [after Thompson and Burke, 1973]; heavy arrows indicate the orientation of o 3, 
the least compressive stress axis calculated here (Table 1). 
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Fig. 3. Stress tensor analysis to a group of 22 faults in Dixie Valley, Nevada. Vertical bars in Figures 3c-3f for 

ILt=0.8 indicate the standard deviations of the selected solutions. (a) Normals to faults and slip axes [after Thompson 
and Burke, 1973; Thompson, written communication, 1980]. Lower hemisphere, equal area projection. (b) 
Orientation of the three principal stress axes o 1, ø2 and 0 3, calculated in the present method for the marked 

coefficients of friction. Lower hemisphere, equal area projection. Solid symbols indicate the orientations of the 
principal stresses of the selected solution of ILt=0.8: star for o 1, triangle for o 2 and rhomb for 03; the circles around 
the principal stress indicate the standard deviations of orientations of the principal stresses. (c) Normalized octahedral 
shear stress S O (equation (9)). (d) Mean misfit angle between observed and calculated slip axes of all faults. (e) 
Calculated mean cohesion (marked as fractions of 033). (f) Stress ratio as function of coefficient of friction. 

range for friction: 0.01 < !.t < 1.0. The mean cohesion is set as 
C=0. 

2. Calculating the coefficients of matrix A (equation (5)) and 

vector F (equation (7)). 

3. Solving the overdetermined system A x D = F for the five 
unknown stress components (the vertical stress 033 scales the 

magnitudes of all other stresses). Following Schied [1968], the 

program determines the solution with the least squares method 

and provides the best fit tensor oij and the mean square error 
RMS. 

4. The six stress components are used to calculate the 
magnitudes and the orientations of the principal stresses o 1, ø2 

and o 3 [after Jaeger and Cook, 1969, chap. 2]. 

5. The stress tensor oij is substituted into (4) for each fault. 
The program calculates for the k th fault the normal stress, the 
shear stress in the slip direction, the cohesion 
Ck= 'r k - la (On)k, and the misfit angle (the angle between the 
observed slip axis and the expected slip axis). The mean misfit 

angle and the mean cohesion are computed. 
6. The results are displayed as plots of the octahedral shear 



Reches: Determination of the Tectonic Stress Tensor $5 3 

J 

.: : 
: ß •. : : .',<. 

: O• .:.": 
i : C:: ..'.i'•:" 

/i//;/ / 
7 

Fig. 4A. Simplified tectonic map of Sinai-Israel with the 

stress trajectories of the Syrian Arc stress field [after Eyal and 
Reches, 1983]. 

stresses, the mean misfit angle, the mean cohesion, the stress 

ratio, and the orientations of the principal stresses as functions 
of the coefficient of friction. 

7. A Mohr diagram is plotted using the normal stress and 

the maximum shear stress calculated for the faults by the 

selected solution together with the assumed yield envelope and 

the Mohr circles. If the calculated slip direction along a fault is 

the inverse of the observed slip direction, this particular fault 

is excluded from the data set, and the computation is repeated. 

8. The accuracy of the solutions is estimated from the mean 

square error. 

FIELD EXAMPLES 

The new method is applied to three cases: A set of 22 

surfaces of normal faults with slip striations measured in Dixie 

Valley, Nevada [Thompson and Burke, 1973; Thompson, 

written communication, 1980] (Figures 2 and 3), a set of 16 

right-lateral and left-lateral faults with slickensides measured in 

the Wadi Neqarot, southern Israel (Figures 4 and 5) [Eyal and 

Reches, 1983] and 17 faults with their 17 auxiliary planes 

determined from aftershocks of the Yuli earthquake, Taiwan 

(Figure 6) lAngelief, 1984]. 

Thompson and Burke [1973] studied the rate and direction of 

spreading at the Dixie Valley area, Nevada (Figures 2 and 3a). 

They determined a spreading direction of N55øW-S55øE from 

slickenside grooves on old faults in the bedrock, which is 

consistent with the spreading direction of the recent 

earthquakes. Zoback and Zoback [1980] showed that the 

slickenside grooves measured in Dixie Valley agree with the 

regional distribution of stress directions determined from 

earthquakes, hydrofracturing and fault slip data in north central 
Nevada. 

Eyal and Reches [1983] determined the paleostress 

trajectories in Sinai-Israel subplate by analyzing the regional 

patterns of mesostructures. They detected two regional 

paleostress fields: One field is associated with the Syrian Arc 

Major fault 

•o • 

Fig. 4B. Tectonic features in the proximity of the Wadi Neqarot station [after Bartov, 1974]. 
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Fig. 5. Stress tensor analysis to a group of 16 faults in Wadi Neqarot, Israel. Vertical bars in Figures 5c-5f for 
g=0.6 indicate the standard deviations of the selected solutions. (a) Normals to faults and slip axes [after Eyal and 
Reches, 1983]. Lower hemisphere, equal area projection. (b) Orientation of the three principal stress axes C•l, c•2 and 
c• 3, calculated in the present method for the marked coefficients of friction. Lower hemisphere, equal area projection. 

Solid symbols indicate the orientations of the principal stresses of the selected solution of g=0.6: star for c• 1, 
triangle for c• 2 and rhomb for c•3; the circles around the principal stress indicate the standard deviations of 
orientations of the principal stresses. (c) Normalized octahedral shear stress S O (equation (9)). (d) Mean misfit angle 
between observed and calculated slip axes of all faults. (e) Calculated mean cohesion (marked as fractions of c•33). (f) 
Stress ratio as function of coefficient of friction. 

deformation (Senonian to Miocene in age) (Figure 4A), and the 
second is associated with slip along the Dead Sea transform 

(Miocene to Recent in age). Eyal and Reches [1983] found that 

the palcostress fields are uniform and essentially independent of 
local structures. This observation is demonstrated here for one 

of their 130 stations, where 16 small wrench faults were 

measured in Cenomanian rocks in Wadi Neqarot, southern 

Israel (Figure 5a). This station is located within a complex 

region of faults, flexures, and domes of the Syrian Are system, 

south of the Ramon structure (Figure 4B), yet the stress tensor 

determined for this station is in accord with the regional field 
(see below). 

Seventeen focal plane solutions have been determined for 

aftershocks of Yuli earthquake in eastern Taiwan [Yu and Tsai, 

1982]. Angelier [1984] cited their data and determined the 
reduced stress tensor for these focal solutions. The 17 focal 
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Fig. 6. S•ess tensor •alysis to a group of 17 faults •d 17 auxili•y plies of microseismic events associated 
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the principal s•esses of the selfted solution of p=0.8: st• for S 1, •iangle for S 2 •d rhomb for S3; •e circles 
around •e pfincip• s•ess indicate the smnd•d deviations of orientations of the principal s•esses. (c) Normalized 
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solutions provide the orientations of 17 fault planes and their 

17 auxiliary planes. Twelve of the focal solutions indicate 

reverse slip, and five indicate oblique strike slip. 

Parameter Investigation 

The solutions for each case were calculated for 0.01 < g < 
1.0, vertical stress o33=1 (the scaling stress), and mean 

cohesion C=0. The solutions are presented by six diagrams 

which show the variations of the following parameters with 
the coefficient of friction: 

1. The original fault slip data (Figures 3a, 5a and 6a). 

2. The orientations of the principal stress axes (Figures 3b, 

5b and 6b). 

3. The normalized octahedral shear stress, 

So= [(ø 1-ø2)2+(ø2-ø3)2+(ø3 -01)2] 1/2/o33 (9) 
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which is a measure of the three dimensional stress differences 

(Figures 3c, 5c and 6c). S O increases monotonously and 
nonlinearly with !x in all three cases. 

4. The mean misfit angle between observed and expected slip 

axes of the faults (Figures 3d, 5d and 6d). This angle increases 

nonlinearly with Ix. 

5. The calculated mean cohesion along the faults (Figures 

3e, 5e and 6e). 

6. The stress ratio (Figures 3f, 5f and 60, 

0 = (c•2-c• 3) / (c• 1-c•3) (10) 

This parameter has been used in previous stress 
determinations [e.g., Angelier, 1984; Michael 1984]. 

Selection of a Preferred Solution. 

Figures 3, 5 and 6 present the solutions of the three field 
cases for 0.1 < Ix < 1.0 and C=0, and one has to select a 

preferred solution from this range. A preferred solution 
includes three components: (1) The friction coefficient Ix is as 

close as possible to Ix--0.8 [Byedee, 1978]. (2) The mean 
misfit angle is as small as possible. (3) The mean cohesion is 

slip resisting, C > 0. 
Dixie Valley Faults. The faults of Dixie Valley display 

steady behavior: Orientations of the principal axes are stable 

(Figure 3b), the mean misfit angle is between 7 ø and 8 ø for all 

friction coefficients (Figure 3d), mean cohesion is slip 

resisting for all friction coefficients within the statistical 

confidence limits (Figure 3e), and all principal stresses are 

compressive. The steady behavior of the solutions reflects the 

simple and clear pattern of this group of faults (Figure 3a). 
I select a solution with the commonly used friction 

coefficient, Ix = 0.8 [Byerlee, 1978]; this solution is marked in 

Figure 3b and listed in Table 1. 

Wadi Neqarot Faults. The numerical solution for Wadi 
Neqarot faults differs from the solution for Dixie Valley faults. 
The axes of the principal stresses c• 1 and c• 2 rotate significantly 
with Ix (Figure 5b): Axis Ixl rotates from plunging 13 ø toward 

115 ø for Ix=0.1, to plunging 51 ø toward 299 ø for Ix=i.0, axis 
ø2 rotates in an inverted manner, whereas axis ø3 maintains 
approximately the same orientation for all Ix values. The mean 
cohesion is slip resisting for all friction values (Figure 5e). 

Misfit angles are relatively small (below 19 ø) for Ix < 0.6 and 

they increase faster for Ix > 0.6 (Figure 5d). 

I select here Ix = 0.6 as the preferred solution (dark symbols 
in Figure 5b and Table 1), because the solutions for Ix < 0.6 
fit the data better than solutions with Ix > 0.6 (as reflected by 

the smaller misfit angle in Figure 5d), and on the other hand, 
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orientation of the three principal stress axes S 1, S2, and S 3 for g=0.1. Lower hemisphere, equal area projection. 
Data from Angelier [1984]. 

the coefficient of friction is relatively close to the experimental 

results of Byeflee [ 1978]. This process of somewhat 

"subjective" selection is discussed below. 

Microseismic Events of Yuli Earthquake. Solutions were 

determined for three subsets of these events: all 34 planes, 

including faults and auxiliary planes, and two subsets each 

with 17 planes. I calculated the set of 34 planes for 
comparison with the results of Angelier [1984], and the other 

two subsets for investigation of the solution stability. 

The solutions for the 34 planes of Yuli microearthquakes 
provide a restricted range for the preferred solution: The misfit 

angle is 24 ø for g=0.1, 30 ø for g=0.3, and increases faster for 

> 0.3 (Figure 6d). The solutions for g > 0.05 yield negative 

mean cohesion, namely, slip supporting cohesion (Figure 6e); 

such solutions should be rejected. Thus both the relatively 

large misfit angle for g > 0.1 and the negative cohesion for g 

> 0.05 suggest that the preferred solution is in the range 0.0 < 

g < 0.1. I select g=0.1 (dark symbols in Figure 6b and Table 

1) simply because I search for friction as large as possible. 

The results for the other two subsets, each with 17 planes, 
are presented in Figure 7. The orientation of the a 1 axis is 

similar in all three subsets (Figures 6b and 7), whereas they 
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Fig. 8. Mohr diagrams of the selected solutions. Solid circles are the predicted maximum shear stress and the 

normal stress acting on each fault; the large circles are the Mohr circles of the determined principal stresses (Table 
1); solid lines are the yield envelope ß = C + ga n used in the derivation (equation (7)); dashed lines are the linear 

regression yield envelope. (a) Dixie Valley faults, C=0 and g=0.8. (b) Neqarot faults, C=0 and g=0.6. (c) Yuli 

microearthquakes, C=0 and g=0.1. 
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differ in the orientations of the o 2 and o 3 axes. The 
orientations of o 2 and o 3 interchange positions in a plane 
normal to the Ol axis (Figure 7). 

The Yield Condition 

The relations between the calculated stresses and the assumed 

Coulomb yield condition (equation (1)) is examined here. 

Figure 8 displays Mohr diagrams of the selected solutions of 

the three field cases. It includes plots of the maximum shear 
stress versus the normal stress for each individual fault, Mohr 

circles for the best fit principal stresses, the yield envelopes 
used in the calculations (x = 0.8 o n for the Dixie Valley case, x 
= 0.6 o n for the Neqarot case and x = 0.1 o n for the Yuli 
earthquakes case) and the yield envelope calculated by linear 

regression for the shear and normal stresses. 

Good agreement appears between calculated and expected 

yield conditions for Dixie Valley (Figure 8a) and Wadi Neqarot 

(Figure 8b), and only fair agreement appears for Yuli 

earthquakes (Figure 8c). The good agreement is apparent in the 

distribution of the calculated stresses (solid circles in Figures 

8a and 8b) along the selected yield envelopes (solid lines in 

Figures 8a and 8b), the good correlation coefficients found in 

the linear regression calculations of the yield envelopes (dashed 

lines in Figures 8a and 8b), and the approximate tangential 

relationship between the Mohr circles and the yield envelopes. 

The agreement is only fair for the Yuli earthquakes where 
stresses for most faults are close to the yield envelopes (solid 

circles in Figure 8c) and the slope of the selected yield 

envelope, g=0.1, is essentially the same as the slope of the 

regression envelope. 

ACCURACY OF 75t]E SOLUTIONS 

The least squares solution of the overdetermined linear 

system provides the stress tensor (equation (6)), which 
minimizes the residual vector 

R=AxD-F 

where A is a matrix calculated from the fault slip data 

(equation (5)), D is a vector of the components of the stress 

tensor (equation (6)) and F is a vector calculated from the 

vertical stress, friction, and cohesion (eq. 7). For a set of K 
faults the vector R has 2K terms, from rl to r2k. The accuracy 
of the solution is represented by the root of the mean square 
error, 
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TABLE 3. Comparison of Present and Previous Results 

Mean Mean Orientations b S tress 

Friction Misfit a o 1 o 3 Ratio 

Dixie Valley 

Selected solution (present) 0.8 

Special solution (present) 0.01 
Michael [1984] 

Yuli earthquakes 

Selected solution (presen0 0.1 

Special solution (present) 0.01 
Angelier [1984] (first) 

Angelier [1984] (second) 

7.8 71/137 18/307 0.08 

7.0 81/224 1/123 0.39 

5.6 tO 124 0.48 

24 11/135 66/255 0.08 

23 9/135 77/276 0.16 

30 5/121 82/249 0.2 

26 2/131 81/028 0.0 

a 
In degrees. 

b 
Plunge (in degrees)/Trend (in degrees). 

RMS = [ ( • r2 k ) / 2K } 1/2 

where r k is the residual of the k th fault [Scheid, 1968, chap. 
28]. The RMS is regarded as an estimate of the standard 
deviation of the best fit solution. 

The magnitudes and orientations of the principal stress axes 
depend non linearly on F: The solutions for F 1 = F + RMS 
and for F 2 = F - RMS are not symmetrical with respect to the 
solution for F, and thus three sets of solutions are calculated, 
for F, F 1 , and F 2, for the selected friction. The results of the 
three solutions are shown in Figures 3, 5, and 6 and listed in 
Table 2. 

The deviations of the magnitudes of the principal stresses 
ranges from 1% to 17% of the vertical stress 033, with mean 

deviation of 5.8% (Table 2). Thus the magnitudes of the 

principal stresses of the best fit solutions are good estimates of 
the "true" magnitudes in the three field cases. 

The angular deviations of the axes orientations of Dixie 
Valley and Wadi Neqarot range from 7.7 ø to 20.9 ø (Table 2 and 
Figures 3b and 5b). For the Yuli microearthquakes case, the 
angular deviations for o 1 axis are up to 15.2 ø, and o 2 and o 3 
interchange their positions in a plane normal to o 1 (Figure 

6b). This interchange of stress axes is also reflected in the 
essentially identical magnitudes of o 2 and o 3 (Table 2) and in 

the solutions for the two subsets of this group (Figure 7). 

Thus, o 2 -• o 3 for the case of Yuli earthquakes, and 0-•O. 
Figures 3e and 5e indicate that the mean cohesion for Dixie 

Valley and Wadi Neqarot may be regarded as zero, in agreement 
with the initial selected cohesion. Further, it appears that the 

mean cohesion in these cases hardly depends on the friction 

coefficients (Figures 3e and 5e). The mean cohesion of the 
Yuli earthquakes for g=0.1 is slightly negative, C = (-0.042 + 
0.027)033 (Figure 6e). The difference between this value and 
the initial cohesion C=0 suggests that a better solution for the 

Yuli earthquakes should probably be with g < 0.05. 

DISCUSSION 

Comparison with Previous Methods 

Two of the field examples were analyzed previously, Dixie 

Valley by Michael [1984] and Yuli earthquakes by Angelier 
[ 1984]. Table 3 lists the previous results, the selected 

solutions of the present method and solutions of the present 
method for g=0.01. 

As in the present study, Michael [1984] assumed that the 
resistance to slip along the faults can be represented by a mean 
cohesion and a mean friction coefficient. His formulation, 

which is based on the assumptions of uniform shear stress 

along the slipping faults, is similar to the present formulation 
(compare equations 3 and 4 of Michael, 1984, with present (5) 
and (6)). The results of Michael for the Dixie Valley case are 

in agreement with the results of the solution for g=0.01 (Table 
3). The agreement is good for the orientations of the principal 
stresses [see also Figure 4 in the work by Michael, 1984] and 
the angle of misfit, and fair for the stress ratio (Table 3). 
Michael's results are only roughly similar to the selected 
solution of the present method for g=0.8 (Tables 2 and 3). 
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Angelier [1984] calculated the reduced stress tensor for the 

focal solutions of the Yuli microearthquakes by using his 

inversion techniques. His results, including the orientations of 

the principal stresses, the stress ratio 0 and the angle of 
misfit, are in good agreement with the solution of the present 
method for g=0.01 (Table 3). 

The inversion methods of Angelier and Michael do not 

consider the friction coefficient and the cohesion and they 

provide a single, special solution. On the other hand, the 

present method provides a collection of permissible solutions. 
The good agreement found between the present solutions for 
g=0.01 (solution for g=0 is not permitted for numerical 
reasons) and the results of the previous methods suggests that 

these solutions implicitly consider the case of g=0. This 

suggestion is expected. Previous methods minimize the angle 
of misfit, and, as demonstrated here, the smallest angle of 

misfit is indeed for g=0 (Figures 3d, 5d and 6d). 

Solution Selection Procedure 

While applying the present method to field cases I searched 
for solutions which include coefficients of friction as close as 

possible to measured rock friction and relatively small angles 

of misfit. This apparently "subjective" selection procedure 

indicates the utilization of two independent constraints: the 

yield criterion and the slip in maximum slip direction. 

One may use an "objective" selection procedure which is 

based on one constraint, for example, minimizing the angle of 

misfit (similarly to Gephart and Forsyth [ 1984], Angelier 

[1984] and Michael [1984]). However, minimizing the angle 

of misfit provides no control on the friction coefficient, and in 

the present field examples it would lead to nonrealistic 

solutions of g=0 (Figures 3, 5 and 6). Therefore the selected 

solution reflects the choice between two options: smallest 

misfit angle with a nonrealistic zero friction or somewhat 

larger misfit angle with reasonable friction coefficient. I prefer 
the second. 

CONCLUSIONS 

The present method incorporates a yield criterion and the 

concept that slip occurs in the direction of maximum resolved 

shear on a fault plane. The computations provide several 

permissible stress solutions, and the selection of the most 
suitable solution is based on field observations and mechanical 

considerations. Furthermore, one obtains the mean coefficient 

of friction and the mean cohesion which best fit slip along all 
faults in the given group. The method also determines the 

magnitudes of the three principal stresses (in relation to the 

vertical stress). As the absolute magnitude of the vertical stress 

may be estimated from depth of faulting, the new method 
yields the absolute magnitude of the tectonic stress tensor. 

The stress tensor determined here for Dixie Valley (Table 1) 

is in good agreement with the local fault pattern (Figure 2) and 

it fits local and regional extension directions of central Nevada 

[Thompson and Burke, 1973; Zoback and Zoback, 1980]. 

Similarly, the stress tensor of Wadi Neqarot (Table 1) fits the 

regional Syrian Arc deformation of the Sinai-Israel subplate 

(Figure 4) [Eyal & Reches, 1983]. Furthermore, the present 
method provides results similar to the stress inversion results 

of Michael [ 1984] (Dixie Valley faults) and Angelier [ 1984] 

(Yuli Microearthquakes). However, the results are in good 

agreement only when the present method considers g•-0, thus 

suggesting that previous techniques are valid for cases of very 
low coefficient of friction. 

Future improvement of the method will incorporate 

variations in the pore-fluid pressure and consideration of non 
uniform cohesion and friction. 
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