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ABSTRACT

We studied the fracturing processes of stiff limestone layers embedded in compliant silty and sandy layers of Carmel Formation,
Cedar Mountain area, central Utah. The studied limestone layers are intensely fractured by two or three sets of tensile fractures and
small faults. Fracture density is anomalously high: up to 165 fractures/meter in a 0.065 m thick layer. The intense fracturing is
interpreted here as reflecting stress amplification inside the limestone layers. Eshelby’s inclusion analysis is used to show that
regional compressive stresses, which are associated with overburden and tectonic loading, could generate tensile stresses of high
magnitude within the limestone layers.
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INTRODUCTION

Sequences of sedimentary rocks are composed of layers with different mechanical properties that are juxtaposed one above the other.
These sequences include alternations of brittle and ductile layers and alternations of stiff and compliant layers. In brittle/ductile
sequences, the brittle layers tend to yield by tensile jointing or by shear fracturing, while the ductile layers tend to flow with no or
little apparent fracturing. One can envision that the contrasts of brittleness and stiffness between layers is a dominant factor in
controlling the development of joints and small faults in sedimentary rocks. We present here a quantitative model to analyze this
effect on fracturing of sedimentary layers.

Many field observations demonstrated the influence of layering on jointing. Hodgson (1961) showed that many joints tend to
terminate at bedding contacts. Harris et al. (1960) and Murray (1968) showed that joint spacing can be correlated with the thickness
of layers, the relative competence of the layers, and the intensity of local structural deformation; and, in general, thin, brittle layers in
highly deformed zones are intensely jointed. These properties of joint sets may strongly affect the quality of a fractured reservoir
(e.g., Nelson, 1985), and its geotechnical properties. Another observation is that fractures may be restricted to the more brittle layers,
terminating toward unfractured, more ductile layers (Lorenz et al., 1991). For example, the highly siliceous, brittle layers in
Monterey Formation, California, are intensively jointed by closely spaced fractures, whereas the alternating, more shaley layers are
jointed by large and widely spaced fractures.

FIELD OBSERVATIONS

We present some features of tensile fractures in Carmel Formation, Cedar Mountain area, central Utah. The lower Carmel Formation
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exposed in this region includes thin-layered sequence of shaley siltstones, fine grain sandstones, mudstone, limestones and gypsum
layers (Krantz, 1986). The current work concentrates on four to eight prominent limestone layers of this unit. These layers range in
thickness from 5 cm to 75 cm, and their horizontal extent is up to a few hundreds meter (Figure 1). The limestone is hard, dark-gray
in color and fine to medium in grain size, and limestone layers form small cliffs within the much softer layers of the shaley siltstones
(Figure 1).

Figure 1: Schematic section of part of the Carmel Formation in Cedar Mountain area. Gray zones- indicate limestone layers; blank 
regions-silty/shaley layers.

The limestone layers in Cedar Mountain area are intensely fractured by two or three sets of tensile fractures. These fractures are
noticeably smooth and planar with faint plumose structures. Fractures of one set usually cross-cut fractures of other sets without
curving. Figure 2 is a map of a characteristic exposure showing the fracture traces observed on top of 0.5 m thick limestone layer.
The map and its rose diagram show two dominant sets, one trending 74° ± 12° and the second trending 117° ± 19° . Most of the
fractures are normal to the bedding surfaces, and many cross the layers from top to base (Figure 3).

Figure 2: Fracture trace map on top of a limestone layer (right), and rose diagram of fracture orientations calculated by segment
length (left). Total fracture trace length is 45 m. Location in Figure 1.
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Figure 3: Side views of fracture patterns in two limestone layers (view position marked in Figure 1).

a. Left- photograph; right-line drawing. B. Field map of fracture traces.

Probably the most striking feature of the studied tensile fractures is the anomalously high fracture density. Fracture density is the
number of fractures counted along a line normal to the fractures, and usually it is represented by its inverse, mean spacing between
fractures. Fracture density depends on several parameters including mechanical properties, intensity of strain and stress and thickness
of the fractured layers (e.g., Price and Corsgrove, 1990). In gently deformed regions, like the study area, fracture spacing is
approximately equal to layer thickness (lines A and B in Figure 4). The present limestone layers display different relations. Figure 3a
displays mean fracture spacing of ≈ 0.006 m (or density of ≈ 165 fractures/meter) in a 0.065 m thick layer. Figure 3b shows mean
fracture spacing of ≈ 0.0125 m (or density of ≈ 80 fractures/meter) in a 0.18 m thick layer. Fractures density can also be estimated
from the cumulative length of the fracture traces in map view. In Figure 2, there are ≈ 45 m of fracture traces per square meter in a
layer of 0.5 m thick. This corresponds to mean spacing of ≈ 0.022 m (or density of ≈ 45 fractures/meter) in a 0.5 m thick layer.

The above spacing values appear as a distinct group with respect to published results (Figure 4). As these spacing values are not
uncommon in Cedar Mountain area, we discuss below a possible explanation for their occurrence.
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Figure 4: Fracture spacing as function of layer thickness in slightly deformed regions.

THEORETICAL ANALYSIS

Eshelby's Model

The high fracturing intensities observed in the limestone layers of Carmel Formation (Figures 1-4) suggest that stresses were
amplified within these layers. We adopt here the approach of Eidelman and Reches (1992) who analyzed the tensile fracturing of stiff
pebbles embedded in poorly consolidated conglomerates. As the host conglomerates could not transmit tensile stresses, these authors
proposed that the tensile fracturing occurred due to the stress amplification associated with the stiffness contrast between the pebbles
and the conglomerate. Eidelman and Reches (1992) presented a 2D solution (Figure 5) that was later expanded to 3D solution based
on the inclusion model of Eshelby (Reches et. al, 1994; Eidelman, 1995). This solution is further developed here.

Figure 5: A 2D presentation of the inclusion model 

 

Eshelby (1957) calculated the stress states in a stiff ellipsoidal inclusion embedded in soft medium. Eshelby’s derivations were used
in many later analyses of composite material (e.g., Mura, 1987; Zhao and Weng, 1990), seismic waves in rocks, and the strength of
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fault zones. We use here the approach of Mura (1987), Benveniste (1987) and Zhao and Weng (1990) who derived Eshelby's
equations in terms of tensorial multiplication. Zhao and Weng (1990) derived a 6 x 6 matrix marked S that represents the Eshelby
solution for inclusion of either oblate geometry (penny shape) or prolate geometry (cigar shape) (Figure 6a,b). Let σi and σm be the
stress vectors in the stiff inclusion and the soft matrix, respectively, and Li and Lm be the matrices of the Lamme' constants of the
inclusion and matrix, respectively, then according to Benveniste (1987; Appendix A),

σi = W σm , 

where, W = Li T Lm-1 , T = [ I + S Lm-1 ( Li - Lm ) ] -1, and S is the matrix of Zhao and Weng (1990), I is the identity matrix,
superscript -1 indicates inverse matrix, and matrix multiplication is assumed. Stress calculations were following Reches (1998).

 

 

Figure 6: Notations for the 3D inclusion model.

Stress Amplifications in Inclusions

The stress amplification within a stiff inclusion is defined here by the ratio between a stress component in the inclusion and the
corresponding stress component in the medium. According to this definition, tensile stress amplification and shear stress
amplification are

Atensile = (σ3)i / (σ3)m and,

Ashear = (σ1 - σ3)i / (σ1 - σ3)m ,

where subscripts i and m denote stresses in the inclusion and medium, respectively. The solution to Eshelby’s problem indicates that
stress amplifications do not depend on absolute values of Young moduli, inclusion dimensions or stress intensities; rather, stress
amplifications depend on the following ratios:

1. Stiffness ratio, K = (Young modulus of inclusion) / (Young modulus of medium),

2. Ratio of the principal axes of the inclusion: X1 : X2 : X3 ,

3. Ratio of the principal stresses applied on the medium, (σ1 )m : (σ2 )m: (σ3)m.

Stress amplifications also depend on the Poisson ratios of the medium and the inclusion.

In one set of calculations, we determined the stress amplifications for axisymmetric penny-shape inclusions that are embedded in
softer medium. The applied stresses on the medium are triaxial compressive, with principal stress axes (σ1 )m, (σ2 )m and (σ3)m
paralleling to X1, X2 and X3, respectively (Figure 6c). The stiffness ratio is constant, K = 5, and the Poisson ratio is 0.25 for the
inclusion and 0.4 for the medium. The shape of the stiff inclusions ranges from spherical, X1 = X2 = X3 = 1, to very thin layers, X1 =
0.0001 and X2 = X3 = 1. The remote stress states range from almost uniaxial stress state, (σ1)m = 1 and (σ2)m= (σ3)m = 0.1, to
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almost hydrostatic stress state, (σ1)m = 1, and (σ2)m = (σ3)m = 0.9. The calculated amplifications of shear stress and tensile stress
display few clear features for the selected parameters (Figure 7):

1. Stress amplification depends strongly on the stress state in the medium , (σi)m. In general, stress states that are closer to
hydrostatic generate less amplification then stress states which are closer to uniaxial.

2. For a given stress state, (σi)m, stress amplification is almost constant for very flat inclusions with aspect ratios of X1 / X2 < 0.01.

3. For a given stress state, (σi)m, stress amplification varies profoundly for inclusions with aspect ratios of X1 / X2 > 0.1.

Stress amplification is large for very flat inclusions. For example, for4.
(σ3)m < 0.5 (σ1)m and X1 / X2 < 0.01, the least compressive stress in the inclusion, (σ3)i, is negative (true tensile) even 
when (σ3)m are compressive. The absolute magnitude of (σ3)i may be as high as 1.2 the magnitude of (σ3)m . Similar
behavior is observed for the shear stress amplification.
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Figure 7: Stress amplification in stiff inclusions calculated for K= 5, ν i = 0.25 and ν m = 0.4.

A. (upper) Tensile stress amplification and B. (lower) shear stress amplification).

Applications to Layers

A typical rock layer is relatively thin with respect to its lateral extent, namely, L>>T in Figure 8. Such a layer may be idealized as an
oblate ellipsoid with relative axes of X1=1 and X2 = X3 > > 100. In a second set of calculations, stress amplification were derived for
an ellipsoidal, flat layers of stiff limestone or dolomite that are embedded within a sequence of soft shales or marls (Figure 8). In the
field, such sequences are usually subjected to combined loading of overburden load associated with the own weight of the rocks, and
tectonic load associated with regional deformation. The overburden load generates vertical stress of

(σ1)m = ρ g h, (1a)

and horizontal stresses that are equal to each other,

(σ2)m = (σ3)m =[ν / ( 1 - ν )] (σ1)m (1b)

where ρ is the mean bulk density, g is earth gravity, and h is depth.
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Figure 8: 3D view of the inclusion model for stiff layers embedded in soft rock sequence.

Krantz (1986) studied a system of normal faults developed in the Navajo Sandstone in Cedar Mountain area. It is likely that the
studied Carmel Formation was subjected to the same tectonic extension as the underlying Navajo sandstone. Therefore, we examine
here the tectonic loading of horizontal extension (normal faulting environment) that is superposed on the overburden load (Eqns. 1).
Under such tectonic deformation, the vertical stress remains as above, and one of the horizontal stresses is reduced due to the tectonic
extension. We chose a reduction of a factor of two following the arguments of Reches and Fink (1988). For a Poisson’s ratio of ν =
0.3 and the above selections, the vertical stress is

(σ1)m = ρ g h, (2a)

the maximum horizontal stress is

(σ2)m = [ν / ( 1 - ν )] (σ1)m = 0.43 ρ g h, (2b)

and the least horizontal stress is

(σ3)m = 0.5 (σ2)m = 0.21 ρ g h. (2c)

We used equations (1) and (2) to calculate the stress amplification in thin, oblate layers with aspect ratio of X1 / X2 = 0.01, and
constant Poisson ratios of 0.25 and 0.30 for layer and medium. In these calculations, the stiffness ratio ranges from K = 1 to K= 10,
and two stress states were considered: triaxial loading due to the overburden (Eqns. 1) and ployaxial loading due to combined
overburden and tectonic loading (Eqns. 2). The results of these calculations are displayed by shear and tensile amplifications as a
function of K (Figure 9); the stress magnitude in the host medium is normalized to unity. Figure 9b shows that the maximum shear
stress in the layer (σ1 - σ3)i is 1.5 times the maximum shear stress in the medium (σ1 - σ3)m for K > 2., even without tectonic
stresses. If tectonic stresses are active, (σ1 - σ3)i increases almost linearly with K. Similar behavior appears in Figure 9a for the
tensile stresses. Here however, a more striking feature is shown: under tectonic loading, true tensile stresses develop within the layer
for all cases of K > 1.5. This result implies that tensile fractures could develop within relatively stiff layers even when all applied
loads are compressive.
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Figure 9: Amplification of maximum tensile stress within a stiff layer embedded in soft medium. ν i = 0.25 and ν m = 0.3. A. (above) 
Tensile stress amplification and B. (below) shear stress amplification.

SUMMARY

We used Eshelby's model to calculate the expected stresses within thin, stiff layers embedded in a soft, layered sequence, under
reasonable conditions of overburden loading and tectonic horizontal extension. The main results of Figures 7 and 9 are listed in Table
1. It is shown that tensile stresses should prevail in the layers even under compressive stress state in the medium. We envision that
the limestone layers of Cedar Mountain area, fractured as follows. Under conditions of horizontal extension and vertical overburden
stresses, the Carmel Formation was subjected to stress state that is close to the conditions of Eqn. (2). The overburden depth, h, at the
time of fracturing is unknown but most likely it exceeded 1 km. By using bulk density of ρ = 2,600 kg/m3 , and depth h = 1000 m,
Eqns. (2) indicate stress state of (σ1)m = 26 MPa, (σ2)m = 11 MPa, and (σ3)m = 5.5 MPa. Assuming a reasonable stiffness ratio of

K = 5, then Figure 9 indicate that the least stress in the inclusion is tensile, (σ3)i = − 3 Mpa (or more tensile for greater depth). This
high tensile stress could generate tensile fracturing even without the contribution of pore pressure (Weinberger et al., 1994). As the
stiffness ratio depends on the lithology of the limestone layers, the amplified stresses would prevail as long as the tectonic stresses
are active, leading to continuation of the fracturing and to the observed high fracture density.
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TABLE 1: Summary of calculations (after Figures 7 and 9).

Aspect ratio of 
layer Remote 
stress state

Tensile 
stress 
amplification

Shear stress 
amplification

X1/X2 ≤ 0.01 
(thin layer)

K =5 ν i = 0.2 

ν m = 0.4

(σ2)m=(σ3)m ≤ 0.5(σ1)m

(compressive)

true tension in the stiff 
layer

3.5-4.5 larger 
than remote 

X1 /X2 ≤ 0.01 K ≥ 1.5 ν i = 0.2 

ν m = 0.3

(σ2)m=(σ3)m = 0.43(σ1)m

(overburden)

no true tension in the 
stiff layer 

≈ 1.5 larger than
remote

X1 /X2 ≤ 0.01 K ≥ 1.5 ν i = 0.2 

ν m = 0.3

(σ2)m= 0.43(σ1)m

(σ3)m = 0.21(σ1)m

(overburden + tectonic)

true tension in layer 
(for K=10, 

(σ3)i = - 6.5 (σ3)m

for K=10, 3.5 
larger than 
remote
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