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ABSTRACT 

Reches, Z., 1983. Faulting of rocks in three-dimensional strain fields. II. Theoretical analysis. 

Tectonophysics, 95 : 133- 156. 

The model for the faulting of rocks in a three-dimensional strain field is derived here. It is assumed 

that the strain applied on a rock is accommodated by slip along faults. It is shown that four sets of faults 

in orthorhombic symmetry are required to accommodate general, three-dimensional deformation. It is 

further assumed that the preferred faults, namely, those which are most likely to slip, require the 

minimum stress difference and minimum dissipation. The orientations of these theoretically preferred 

faults are derived, and are compared with the experimental results of Part I (Reches and Dieterich, 1983). 

Good agreement is found between the predicted and observed orientations of faults in the Berea 

sandstone and Candor0 limestone, whereas, faults in granites deviate from the predicted orientations. 

Good agreement is also found between predicted and observed stresses of all experiments. Charts of the 

preferred faults predicted by the present model are given in an Appendix. 

INTRODUCTION 

The faulting of rocks is usually analyzed by two different approaches. In the first 

approach, a yield criterion is either postulated or determined experimentally, whereas 

in the second approach, the mechanism of yielding is initially postulated and the 

yielding stresses are then derived. The first approach incorporates criteria such as 

maximum shear stress (Tresca’s criterion), maximum octahedral shear stress, Von 

Mises’ criterion and a series of empirical criteria (e.g. Paterson, 1978). The Coulomb 

criterion, applied by Anderson (1951) to faulting of rocks, also belongs to this 

approach. The second approach includes Griffith’s model, models which assumed 

slip on preexisting faults (e.g. Jaeger and Cook, 1969) or interference between faults 

(Oertel, 1965). The primary objective of most models is to determine the states of 
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stress which cause the yielding of rocks. Models using both approaches predict the 

development of a conjugate set of faults, which intersect parallel to the intermediate 

stress axis and have no slip component in the direction of this axis (e.g. Anderson. 

195 1). Therefore, these models imply no strain due to slip along faults in the 

direction of the intermediate axis. The strain associated with the faulting is therefore 

plane strain. 

A different model of faulting is presented here. In this model rhr ~mmzttmla~tw~ 

of strain h~$ slip along preexisting faults is analyzed. It is assumed that this slip is the 

sole means of deformation and that the resistance to slip along the faults is both 

cohesive and frictional. It is further assumed that the faults which accommodate the 

applied strain with minimum dissipation are the ones most likely to slip. This model. 

termed here the “slip model”. belongs to the second group of faulting models 

described above. At the present state. the “slip model” is derived for preexisting 

faults and thus, may not be directly applied to yielding of an unfaulted sample. 

The development of the “slip model” resulted from the experimental observations 

of Oertel (1965) and the field data of Aydin (1977). In both cases they recognized 

four sets of penecontemporaneous faults in orthorhombic symmetry: none of which 

could be considered a conjugate set. Oertel (1965) clearly demonstrated that a 

three-dimensional state of strain prevailed in his experiments, suggesting that the 

observed orthorhombic pattern is due to the general strain conditions. Aydin (1977) 

documented patterns of three or four contemporaneous sets of faults in the Entrada 

and Navajo sandstones, Utah. He suggested that these orthorhombic patterns can be 

interpreted as slip surfaces derived by the theory of plasticity for three-dimensional 

strain (Aydin, pers. commun., 1977). Reches (1978) presented a slip model in which 

the strain is accommodated by slip along faults with only cohesive resistance to 

shear. He showed that the development of four sets of faults vvith orthorhombic 

symmetry occurs in a three-dimensional strain field whereas two sets of faults with a 

conjugate pattern, arise as a result of plane strain. These patterns are independent of 

the properties of the faulted material. This simple model lacks frictional resistance to 

slip, which is common for most rocks. The present model on the other hand. does 

include such resistance. 

Experiments investigating the failure of rocks are usually conducted under 

axisymmetric strain or plane strain. However, according to Oertel (1965). Aydin 

(1977). and Reches (1978) the othorhombic fault patterns develop under general 

three-dimensional strain. Therefore, we (Reches and Dieterich. Part I) have run a 

series of experiments under general three-dimensional strain. using a servo-con- 

trolled apparatus. In this paper the main results of these experiments will be 

compared with the predictions of the “slip model”. 

As there is no reason to believe that in the field rocks are faulted under plane or 

axisymmetric strain. it is proposed here that the “slip model” should be applied to 

both field and experimental results. 
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THEORETICAL ANALYSIS OF THE “SLIP MODEL” 

The deformation of a medium due to slip along faults is analyzed here in several 

steps. First, the properties of the idealized model and the symplifying assumptions 

are outlined. Then, the geometry of the faults, the strain field and the stress field are 

derived. Finally, the orientations of the preferred faults are determined. 

The idealized model has the following properties: 

(1) The model contains many surfaces of discontinuity with random orientation, 

prior to the deformation. 

(2) The applied deformation is accommodated solely by slip along a few sets of 

faults selected from the preexisting surfaces of discontinuity. It is assumed that the 

selected sets require the minimum dissipation to maintain slip under a given strain. 

(3) There is a sufficient density of faults in each set, such that the deformation of 

a rock containing the faults can be considered as approximately homogeneous. 

(4) The resistance to slip along the faults obeys Coulomb’s friction law and 

therefore has both cohesive and frictional components. 

The idealized model is similar to that presented by Reches (1978), except that 

frictional resistance is now included. The analysis is for infinitesimal strains. Thus 

elastic, viscous or plastic deformation may be superimposed. Homogeneous stress 

distribution and coincidence of stress and strain axes are assumed. 

The slip along many faults within a set, generates simple shear within the 

coordinate system of this set (Oertel, 1965; Reches, 1978). The superposition of the 

simple shears along several sets, generates three-dimensional deformation in the 

coordinate system of the model. The contribution of each set of faults to the general 

deformation can be calculated by transformation from the coordinate system of the 

set, to the general coordinates. As coordinates of a set of faults three mutually 

perpendicular axes were chosen: x, is normal to the set and the two slip axes, x2 and 

x3 are within the set. As the shear in the x2 direction is independent of the shear in 

the xj direction, each set of faults has two independent shear contributions to the 

general deformation (Reches, 1978). 

As in strain accommodation within crystals (e.g. Taylor, 1938) the required 

number of independent contributions of shears equals the number of independent 

components in the strain and rotation tensors. The strain tensor, e,,, for three 

dimensions has six independent components, whereas the rotation tensor, w,,, has 

three such components. As slip along faults is the sole deformation mechanism, there 

is no volume change, and the strain tensor includes only five independent compo- 

nents. 

Therefore, three sets of faults, each of them with two independent contributions 

of shear, are necessary and sufficient to accommodate three-dimensional strain. If, 

however, a specified rotation field is applied to the model in addition to a specified 

strain field, four sets of faults are necessary and sufficient to accommodate the eight 

independent components of both tensors (Reches, 1978). 
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The three or four sets of faults required to accommodate the deformation may 

have arbitrary orientations with respect to the principal strain axes. We assume, 

however, that faults with certain orientations are more “efficient” than faults with 

other orientations. (This efficiency will be defined later.). As the strain field has 

orthorhombic symmetry, every “efficient” fault has three additional faults, generated 

by the orthorhombic symmetry operations, which carry the same contributions to 

the principal strains e,, e2 and e3 (Fig. 1). For example, consider a fault I. the 

normal to which has N,, N2 and NJ (all non-negative) as the direction cosines with 

respect to the three principal axes X,, X, and X, respectively. Here N, = cos( S,., ), 

i = 1, 2, 3 (Fig. 2). The orthorhombic symmetry generates faults II with N,, - Nz and 

N3 as directional cosines of the normal, and similarly, fault III with -iV,. - N, and 

N3 and fault IV with -N,, N, and N3 and the corresponding slip directions (eq. 1 

beIow). According to eq. 1 below, ,a11 these four faults have the same coefficients N,S, 

(eq. 2a below}, and thus, make the same relative contributions to the principal 

strains. It appears that all these four faults sets have the same “efficiency” with 

respect to the principal strains. They are therefore, equivalent and should shear in 

equal amounts simultaneously. 

Fig. 1. a A conjugate set of normal faults, and the associated principal stress and strain axes according to 

Anderson (195 I). 

b. Four sets of normal faults that can accommodate three-dimensional strain, and the orientations of the 

principal stress and strain axes. Arrows indicate slip directions in both diagrams. 



137 

Foult plane 

si = cos (B@ 1 

lUi= COS (Bi,iJ 1 

b 
Fig. 2. a. The orientation of a fault plane with respect to the coordinate system of the principal strain 
axes. The s&n axes are marked X,, X, and A’,; the normal to the fault and the slip direction on it, are 

marked N and S respectively. 

b. Stereographic projection of the angular relationship shown in Fig. 2a. Lower hemisphere, Wulff net. 

In conclusion, it is shown by symmetry arguments, that the four sets required to 

accommodate the deformation, are arranged in orthorhombic symmetry with respect 

to the principal deformation axes. 

The strain field 

The geometry of the four sets of faults in the idealized model is shown in Fig. lb. 

due to the orthorhombic symmetry the direction cosines may be written as follows: 

Fault I : N, , Nz and N3; S, , S, and S, 

Fault II: N,, -N, and N,; S,, -S, and S, 

Fault III: -N, , - N2 and N,; - S, , - S, and S, 

FaultIV: -N,,N,andN,; -$,&and& (1) 

where Ni and S, (i = 1, 2, 3) are the absolute values of the direction cosines of the 

normal to the fault set and set and of the corresponding slip direction with respect to 

the principal axes (Fig. 2). One can show that due to eq. 1 the contributions of all 

four sets may be represented by a single set, for example fault I (Reches, 1978, App. 

II). 

The deformation tensor is d,j = 13ui/&xj, i, j = 1, 2, 3, where u, are the displace- 

ments. In the coordinate system of fault I we get 0 0 0 d,,=‘y 0 0 0 
I 1 1 0 0 

(2) 
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where ‘y is the simple shear associated with the slip along set I (Keches, 1978). For 

simplicity we choose the coordinate system of fault I [Eq. (l)] so that the slip in the 

_r: direction vanishes [Eq. (2)j. The fault set appears therefore, as one slip system. 

Any other choice of coordinates will reveal the second slip system. The deformation 

in the coordinate system of set I, can be transformed to the principal axes by: 

‘D,, = N,S,‘y, i,l = 1, 2, 3 (2a) 

where ‘D,, is the contribution of set I to the total deformation D,,. 

The total strain tensor due to equal slip along the four sets (eq. 1). using eqs. 2 is 

(Reches, 1978, eq. A12): 

D,,=4~0 __ 1 

! 

N,S, 0 0 

N-J, 0 i,,j- 1. 2. 3 (3) 

0 0 NJ, 

where y is the amount of simple shear associated with the slip along one set. Note 

that equal shears on four sets in orthorhombic symmetry, assure that rotations and 

shears along the principal planes vanish. Thus the strain tensor e,, is identical to the 

deformation tensor D,, (eq. 3). The sole deformation mechanism is slip along faults. 

so the slip axis must be in the fault plane (Fig. 2). This implies that the slip axis, S,. 

is perpendicular to the normal of the fault N,. or: 

N,S, + N,S, + NJ7 = 0. (4a) 

As eq. 4a is the trace of the strain tensor (eq. 3). it implies no tlolume change during 

deformation. We further know that the direction cosines obey the relations: 

N; + N2” + Iv,’ = 1 (4b) 

and : 

s f + s,’ + $ = 1 (4c) 

Finally, if we define a strain ratio, k = eJe,, between the intermediate compressive 

strain, e,, and maximum compressive strain, e,. we get from eq. 3: 

kN,S, - N2S2 = 0 (a) 

The four eqs. 4a. 4b, 4c, and 4d indicate that, for a given strain ratio k. only two 

out of the six directional cosines, S, and N,, are independent. For example. by 

choosing N, and N, as independent, we obtain: 

I,‘? 

1 -- N; + Nz’ 
S, = & _~_._ , .___- 

1 -N;+N; k:L\;$+2k 
l, I_ 

(5) 

and the other parameters can be easily derived from eqs. 4 and 5. Thus. the 

orientation of the fault, N, and Nz (Fig. 2). for a given strain ratio, k, determines also 

the slip direction on that fault. 
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The stress field 

The slip along faults requires certain stresses to overcome the cohesion and 

friction of the faults. We assume that the principal stress axes coincide with the 

principal strain axes for the idealized model. For a preexisting fault (property 1 

above) the resistance to slip (property 4 above) is: 

rR = C + tan +a, (6) 

where To is the shear strength resisting the slip, $ is the angle of friction and u, is the 

normal stress applied across the fault plane. Here, the term C refers to resistance to 

slip which is independent of the normal stress. During faulting the shear stress 

parallel to the slip direction, rs, is equal to the resisting strength: 

rs = rR (7) 

Using transformation laws of stresses (e.g. Jaeger and Cook, 1969, p. 49) the shear 

and normal stresses applied on fault I [eq. l] are: 

rs = a,N,S, + aZNzS2 + ujNjSj (8a) 

and: 

a, = u, N: + e2 N,’ + (Jo N32 (8b) 

where u,, u2 and u3 are the maximum, intermediate and least compressive stresses, 

respectively (Fig. 2). By substituting eqs. 7 and 8 into eq. 6, and by using eqs. 4 and 

5, we get: 

(6, - u,)( N,S, - tan $N:) + (a, - u,)( kN,S, - tan q5N:) = ? (9) 

where C = C + tan +IJ,. Equation (9) has a form f( u,, u2, q, k) = 0 which is similar 

tof(u,, uZ, u3) = 0, the general form of criteria of failure (e.g. Jaeger and Cook, 1969, 

chapter 4, 6). However, eq. 9 is not a failure criterion. It is a slip criterion. Failure 

criteria specify the state of stress necessary to initiate macroscopic faults or fractures 

in an intact rock, whereas eq. 9 specifies the state of stress necessary to accommodate 

a given strain by sfip along preexisting faults. Failure criteria relate to pre-yielding 

conditions, whereas eq. 9 relates to post-yielding conditions. 

The dissipation 

We assumed above (property 2) that slip should initiate along sets of preexisting 

faults which require the minimum dissipation. The dissipation per unit volume, w, 

required to maintain slip along a set of faults is: 

w=r.y (10) 

where r is the shear stress in the shear direction, and y is the simple shear associated 

with the set (Reches, 1978, App. I). Equation (3) indicates that the cumulative shear 
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along four sets in orthorhombic symmetry is: 

where e, is the maximum compressive strain in the general coordinates. Substituting 

eqs. 4a, 4d, 8a and 11 into eq. 10 yields the dissipation due to slip along four sets: 

iG=(u,-u3)+(uZ-u3)k (12) 

where W = 4w/e,. 

Rewriting eqs. 9 and 12 yields: 

(cr-u,)[N,S,(l+Rk)-tan+(Nf+RN;)] =C+tan+ua, 

and: 

(13a) 

(a, -$)(l +Rk)=L (13b) 

where R = (u2 - u3)/(u, - u3) is the stress ratio. These equations express the depen- 

dence of the stress difference (u, - u3), the stress ratio R and the dissipation i? on 

the fault orientation N, and Nz for given friction angle 9, cohesion C and strain ratio 

k. Equation 13a can be satisfied by many fault orientations N, and N?. each with its 

corresponding stress. Similarly, any stress conditions will provide a solution to eq. 

13b. 

Assumption: There are faults which minimize simultaneously the stress difference 

(0, - u3) in eq. 13a and the dissipation i? in eq. 13b. It is further assumed that these 

faults would slip preferenhzl&. In other words, some faults have such orientations 

which require smaller stresses and dissipation, and thus, these faults are likely to slip 

before the others. These faults are called here the preferred faults. 

The preferred faults and the corresponding stress conditions. have been de- 

termined numerically from eqs. 13. The solution procedure is the following: 

(1) Material properties, + and C, strain ratio k, and normalized confining pressure 

P = Uj/(U, - u3) are chosen. 

(2) A search is conducted for the combination of N,, N, and R which minimize 

(0, - u3) in eq. 13a for the conditions chosen in (1). The complete range. namely, 

l>N,>O. l>N,>,OandR> -0Sissearched. 

(3) A two stage search is conducted for the combination of N,. N1 and R which 

minimize W (eq. 13b). First, the stress difference (a, - a,) is calculated by substitut- 

ing N,, N,, R, +, C, k and P into’eq. 13a (note that eq. 13a must be satisfied). Then. 

the parameters (a, - a,), k and R are substituted into eq. 13b. 

In the present model we have considered only the deformation associated with 

slip along faults. However, the blocks bounded by the faults are also distorted 

elastically. The strain energy of distortion, wd, is also calculated here for comparison. 

By assuming homogeneous stress distribution, the distortion energy per unit volume 
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is (after Jaeger and Cook, 1969): 

1 
wd = m [( 

u, - o*)2 + ( CT2 - 63)2 + (q - 0,)‘3 (13c) 

where G is the elastic shear modulus. Similarly to the dissipation W, (eq. 13b), the 

strain distortion energy is minimized for certain fault orientations. These orienta- 

tions and the associated stress ratios R, are calculated in two stages. First, the stress 

difference (a, - u3) is calculated by substituting N,, N,, R, +, C, k and P into eq. 

13a, the slip criterion. Then, the parameters (aI - u3) and R are substituted into eq. 

13~. A search is conducted to those parameters which minimize w, for a constant 

shear modulus G. 

The results of these numerical calculations with some experimental data are 

shown in Fig. 3. The stress ratios R, which minimize the stress difference (CT, - u3) in 

eq. 13a are shown in a solid line (Fig. 3). The stress ratio varies in steps, R = 0 for all 

k < 0, and R = 1 for all k > 0; this result is independent of the confining pressure P. 
The stress ratios R, which minimize the dissipation (eq. 13b) are shown in dotted line 

for P = 0 (Fig. 3a) and for P = 0.15 (Fig. 3b). Finally, the stress ratios R for which 

the strain energy of distortion, w,, is minimized, are shown in dashed line for P = 0 
(Fig. 3a) and P = 0.10 (Fig. 3b). 

The stress ratios R which minimize (u, - a,), W or w, deviate significantly for 

most strain ratios under unconfined conditions of P = 0, where P = uJ(u, - ax) 
(Fig. 3a). On the other hand, the stress ratios which minimize (a, - a,), w or wd, 

become very similar to each other for P > 0.10 (Fig. 3b). 

The numerical solutions presented in Fig. 3 indicate two main results: 

(1) For confined cases (P > 0.15), there are faults which minimize simultaneously 

the stress difference (u, - u3) and the dissipation W, confirm the assumption made 

above. Furthermore, the strain distortion energy is also minimized for these faults 

(Fig. 3b). 

(2) Axisymmetric stresses (R = 0 or R = 1) minimize both the stress difference 

necessary for slip and the dissipation under three-dimensional strain (k f 0). For the 

cases of u3/( u, - u3) 2 0.15 the solution of eqs. 13a and 13b coincide to give: 

u, =u,fork>O ( 14a) 

and: 

u2=u3forO&k>, -0.5 ( 14b) 

For plane strain the intermediate stress a2 is bounded by 

u,>u,>u,fork=O (14c) 

The derivation of axisymmetric stresses (Fig. 3 and eqs. 14) for three-dimensional 

strain requires some discussion. At first this result opposes intuition: three-dimen- 

sional strain would require three-dimensional stress. A careful examination of the 

assumptions of the proposed model resolves this apparent contradiction. It was 
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Fig. 3. Stress ratios versus strain ratios, theoretical curves and experimental results. 

a. Theoretical curves for unconfined case, P = 0. Experimental data includes mean stress ratlo (solid dot). 

standard deviation bar and number of cases included for each strain ratio. 

b. Theoretical curves for confined cases of P = 0.15. and experimental confining factors P. 

assumed that the preferred faults minimize the stress difference in the slip equation 

(eq. 13a) and minimize the dissipation (eq. 13b), while simultaneously, these faults 

satisfy the applied three-dimensional strain field. The kinematic analysis of slip 

along faults indicates that HOW sets, which do not include the three principal stress 

axes, are necessary to accommodate three-dimensional strain (Reches, 1978; eq. 1 
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above). On the other hand, the well known derivation for faults, which minimize the 

stress difference, (I, - us, yields two sets which in&de the a, axis (e.g. Jaeger and 
Cook, 1969). However, an axisymmetric stress generates an infinite number of sets 
of faults which require the Dante stress difference, u, - u3. The preferred faults are 
among these many sets; but the preferred faults are the only ones which can 
accommodate the applied strain field under the given stress difference with mini- 
mum dissipation. 

The orientations of the preferred fauits can be derived through an analytical 
solution for three special cases. Case I is for k = 1, namely e, = e2. This is the 
“extension” experiment in a triaxial test. Therefore, due to symmetry: 

,N, =,%, I*, =,4 054 

and: 

,S, = ( ’ -t,“‘)‘” (aftereq. 5) (W 

Case II is for k = 0, namely e, = 0. This is the plane strain experiment. Obviously: 

,,N2 =o (164 

and also: 

,,S, = (1 - ,N:)“2 (after eq. 5) (16b) 

Case III is for k = -0.5, namely e2 = e3, which is the “compression” experiment in 
triaxial tests. Therefore, due to symmetry: 

,,,N2 =11,N3, 111~2 =I,,~3 074 

and also: 

,,P, = 1 - 2,,,N2 (after eq. 4b) (17b) 

and: 

I,,~, = (1-111~:)“* 
Substituting conditions (15), (16) and (I 7) into eqs. 9 and 12 yields: 

(17c) 

2j,o, -,es)[,N,( 1 -f,N’)“2- tanf$N:j = C 

%a, - 103) = ,w 

(184 

(18b) 

(,,a, -,,o,) ,p, 1 -,,A$y2 - tan rpq] = c [ ( (194 
lP1 - IP3 = UK @b) 

( ll1o1 -,,,~3) ,,,W 1 -,,,N:)“2 - tan MY] = c 
[ ( (204 
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and: 

IIPI - III(JJ = rrrJ (20b) 

respectively. In these three pairs of equations, the dissipation ir’ depends only on 

01 - u3. Therefore, the faults that minimize u, - CI~ in eqs. 18a, 19a and 20a will also 

minimize the dissipation W in eqs. 18b, I9b and 20b, respectively. Solving eqs. 18a, 

19a and 20a for a N, that minimizes pi, - a, at constant ? yields the following: 

Case I 

,N, =i(l -sin+)“’ 
/ 

I% =,4 1 (21) 

,S, = f( 1 + sin $)‘,” 

Case II 

,,N, = (&F/2)( 1 - sin G)“” I 
1 

u&=0 

rtSl = (&F/2)( 1 - sin $)“2 

/ (22) 
/ 
I 

IIIN, = (L?/2)(1 - sin #)r” / 

,,,Nz = f(1 + sin 9)“’ I (23) 

rrrS, = (&Y/2)( 1 + sin ,P)“’ 
I 
1 

respectively. The minimal stress difference (I, - u3 is derived by substituting eqs. 21. 
22 and 23 into eqs. 18a, 19a and 20a. This difference is the .suMe for all three cases: 

- cos 9 
01 -a,=2C 

1 - sin + (24) 

The intermediate stress, uZ. is different in the three cases: 

The analytical results of the three special cases (eqs. 21-25) are identical to the 

results of the numerical calculations for the minimization of (I, - u? and i? (for 

P 2 0.15). 

The orientations of the preferred faults were determined numerically for all strain 

ratios, and analytically for the three special cases. By comparing the numerical and 

analytical orientations of the preferred faults for the three special cases, we found 

that the o~entations of the preferred faults for all cases can be represented by the 
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following expressions: 

N, =+(&)“2(l -sin+)“2 

(1 - sin $J)“~ 

No = (a/2)(1 + sin +)“2 

S, =+(&)“2(l +sin+)“2 

1 
S, =z +& “2(l + sin+)“2 

( 1 

S, = (a/2)(1 - sin$)“2 

for k 2 0. The orientations of the preferred faults for -0.5 < k d 0 are: 

N, = (a/2)( 1 - sin +)“2 

N, = (fi/2)lkJ”‘( 1 + sin +)“2 

NJ = (a/2)( 1 - lkl)“‘( 1 + sin +)I” 

S, = (a/2)( 1 + sin +)“2 

S, = (@/2)lkl’/2( 1 - sin $I)“~ 

S, = (a/2)( 1 - Jkl)“2( 1 - sin $J)“~ 

(26) 

(27) 

Equations 26 and 27 are the orientations of fault I of the four sets (see eq. 1. By 

simple variations of the signs of Ni and Si according to eq. 1, four sets of faults in 

orthorhombic symmetry are derived. 

The loci of the poles to the predicted faults according to eqs. 26 and 27, are 

shown in Fig. 9. 

In summary, we analyzed the accommodation of strain of an idealized model by 

slip along many preexisting surfaces of discontinuity which develop to become 

faults. It is shown that four sets of faults in orthorhombic symmetry are necessary 

and sufficient to accommodate three dimensional deformation. We derived a slip 
criterion (eq. 9) which indicates the stress field required for slip along the faults, in a 

specified material and for an applied strain field. We assume that the faults which 

satisfy the slip criterion, and minimize the dissipation (eq. 12) simultaneously, are 

the preferred faults. We derive the orientation of these preferred faults (eqs. 26, 27) 

and the stress fields required for slip along them (eqs. 14). 

APPLICATIONS 

In the foregoing analysis we derived the orientations of preferred sets of faults 

which developed in an idealized model subjected to strain boundary conditions. We 
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also derived the stresses necessary to accommodate this strain by slip along the 

preferred faults. The polyaxial tests on cubic samples of sandstones, limestones and 

granites presented in Part I (Reches and Dieterich, 1983), were run under conditions 

similar to those assumed in the theoretical analysis. Thus, these experimental results 

will be compared with the theoretical predictions. 

In these experiments we used an apparatus with three mutually perpendicular 

presses, two of which are servo-controlled. During the experiments the displacement 

rates in these two presses, designated as X and Y, were constant. The servo-control 

system determined the stresses necessary to maintain the fixed displacement rates, 

and varied the stresses accordingly. In the third press, designated as Z, the stress was 

maintained constant. The X, Y and 2 are the principal axes of the deformation 

(Reches and Dieterich, 1983). Rotation was not permitted on the six faces of the 

rock cubes. Therefore, each sample was subjected to mixed boundary conditions: 

constant displacement rates along two principal axes, and constant stress along the 

third principal axis. 

In Part I it is shown that samples of all the rock types that were subjected to 

three-dimensional deformation display three or four sets of faults in orthorhombic 

symmetry. Two out of 28 samples are presented in Fig. 4. It was also shown that due 

to this apparent symmetry, the poles to the faults may be rotated into one quarter of 

the stereonet projection (see Part I). We consider the average fault, calculated after 

the rotation of all experimental faults into one quarter of the stereonet, as the 

representative of the faults measured in the sample. Figure 5 displays the average 

faults in all 28 experiments. If the pole to the average fault falls on one of the 

principal planes, XY, XZ or YZ (e.g., experiment RD-70 in Fig. 5a), it represents a 

set of two faults in conjugate pattern; if however, the pole to the average fault falls 

between the principal planes, it represents three or four faults in orthorhombic 

symmetry. The circle of confidence at (Y = 0.05 level (Fisher’s method), ranges from 

1.6” for sample RD-62 to 15.9’ for RD-70, with mean value of 6.2”. 

It is apparent from Fig. 5a that faults in most samples show orthorhombic 

symmetry as the poles to the average faults are distributed between the XZ and YZ 

planes. Figures 5b, c, d, e show the average faults according to rock type and 

experimental strain ratio, k = e,,/e,. We plotted the theoretical loci of poles to the 

average faults, derived above (eqs. 26, 27), on the same stereonets of Fig. 5. The 

theoretical loci appear as a net of great and small circles on the Wulff stereonets. 

These circles are the graphic presentation of the two variables in eqs. 26 and 27: the 

friction angle + and the strain ratio k. Each circle is the locus of the average fault for 

the constant value of the marked variable. The star symbol in Fig. 5b occurs at the 

intersection of the great circle of strain ratio k = 4 and the small circle of the friction 

angle 30”. According to the present analysis this symbol is the theoretical pole of the 

average fault in a rock sample with friction angle of 30” which failed under strain 

ratio of 4. One can compare now the agreement between the theoretical predictions 

and the experimental results. 



Fig. 4. The fault pattern in a Berea sandstone sample (RD-42) and a Sierra-White granite sample (RD-58) 

that faulted under three-dimensional strain field, On the block diagrams (a and c) fault traces are marked 

in a solid line on x,, y, and z, faces and in dashed line on x2, y2 and zs faces. Traces which belong to the 

same fault surface are connected with a great circle on the stereographic projection on the right (b and d). 

The open squares in the upper right quarter of the stereographic projections are the normal to the faults 

rotated by orthorhombic operation. The average fault is calculated for this rotated position. 

The comparison of the fault orientations 

The series of experiments of Berea sandstone provide the clearest distribution in 

the current experimental work (Fig. 5b). The poles to the average faults in the eleven 
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Fig. 5. The normals to the average faults of all samples plotted on a 30” section of a Wulff net. The small 

and great circles marked in Figures b. c. d and e are the loci of the normals to the preferred faults 

predicted by the slip model (eqs. 26 and 27). 

samples are distributed along the small circle for + = 44”, indicating a friction angle 

of 44” f 4”. These poles also occur in approximate agreement with the predicted 

strain ratios. Faults in samples of large strain ratios, k >/ 2, tend to fall into the 

region predicted for such large ratios, and faults of intermediate strain ratios, 

2 > k > 0.5, tend to fall in the central region. The average faults in the Candoro 

limestone and the Solnhofen limestone (Fig. SC), indicate friction angles of 50’ and 

68” respectively. Here, too, experimental and theoretical orientations agree ap- 

proximately. 

The deviations of the experimental average faults of the 17 samples (Figs. 5b, c; 

Table 1 in Reches and Dieterich, 1983) from the theoretical faults, predicted by eqs. 

26 and 27, were calculated. We use 44”, 50” and 68” as the friction angles for Berea 

sandstone, Candor0 limestone and Solnhofen limestone. the deviations for the eleven 

samples of Berea sandstone (Fig. 5b) range from 1.0” for samples RD-38 and RD-39 

to 9.4O for sample RD-41, with a mean value of 5.3”. The circle of confidence at 

a = 0.05 level (Fisher’s method) for these samples ranges from 2.1” for sample 

RD-36 to 15.9“ for sample RD-70, with a mean value of 6.8”. In eight out of the 

eleven samples (Fig. 5b) the predicted average faults lie inside the corresponding 
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circles of confidence. We conclude therefore, that the experimental faults in these 

eight samples have the predicted orientations, whereas they deviate in the other 

three. In all five samples of limestone (Fig. 5c) the predicted average faults lie in the 

corresponding circles of confidence, thus again indicating the good agreement 

between predicted and experimental orientations. 

The granite samples display fault patterns arranged in orthorhombic symmetry, 

but with no apparent dependence on either the strain ratio or the friction angle (Fig. 

5d). The cause for this behaviour is unknown, and will be the subject of future 

experiments. 

The average faults in samples of negative ratios, namely when eY is extensional, 

also display orthorhombic symmetry for all rock types (Fig. 5e). However, there is 

poor agreement between the experimental poles and the theoretical predictions. The 

mean deviation of the observed faults from the predicted in the four experiments of 

Berea sandstone and Candor0 limestone is 18.3”, much larger than the circles of 

confidence at (r = 0.05 level. 

The stresses required to maintain constant velocities in the x and y axes of the 

experiments, were determined continuously by the servo-control system (Reches and 

Doeterich, 1983). In Part I we identified three stages in most experiments: stage I of 

monotonously increasing stresses which terminates in the first yielding; stage II is 

characterized by interchange of the stresses, yielding events and general stress 

decrease; stage III is characterized by monotonously decreasing stresses. It was also 

shown that the stress ratios ~,/a,, for the first yielding of all experiments, agree with 

the stress ratios predicted for an isotropic, homogeneous body. However, the stress 

ratios of the second yielding and the final stage of the experiments could not be 

predicted by the isotropic, homogeneous stress field. 

We suggest that the first yielding represents faulting of an intact sample; whereas, 

the second yielding and the final stage represent strain accommodation due to slip 

along preexisting faults. Therefore, as the slip model is derived for preexisting faults, 

only the states of stress of the second yielding and final stages may be analyzed by 

this model. Figure 6a displays the values of ax (either u, or a,) versus au (either a, or 

a,) for second yielding and final stage in all experiments. Equation 14a predicts that 

T,. = u_~ for experiments with 0 < k implies that uY is u, rather than a,). Linear 

regression of the observations indicates uY = 1.05~~ + 0.1 with r = 0.89 and stresses 

given in kbar. This is in good agreement with the predicted relationship (Fig. 3a). 

Figure 6b displays the values of u,, (or a,) versus uZ (or u3) for second yielding and 

final stage in all experiments with -0.5 G k G 0. Equation 14b predicts that U, = av 

for these strain ratios; linear regression indicates a, = 0.85~~ + 0.08 with r = 0.68 and 

stresses given in kbar. This is in some agreement with the predicted relationship (Fig. 

6b). Note the wider dispersion of the states of stress for k Q 0, with respect to that 

for 0 < k (Fig. 6). 

We assumed that the slip along the preferred faults minimizes simultaneously the 

stress difference 0, - us,_ (eq. 13a) and the dissipation w (eq. 13a). The numerical 
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Fig. 6. a. The ratio between the two principal stresses o_~ and 0,” during second yield and final stage of all 

experiments. The results for experiments of k < 0 are encircled. 

b. The ratio between the two principal stresses fr and 9 during second yielding and final stage of all 

experiments of k < 0. 

solution of eqs. 13 are presented for unconfined cases (Fig. 3a) and for confined 

cases (fig. 3b). The experimental stress ratios, R = (u,, - ~~)/(a,~ - a,), are also 

plotted in Fig. 3 (the same data points as in Fig. 6). The mean stress ratio and the 

standard deviation are shown for each experimental strain ratio. The experimental 

data correlate reasonably well with the stress ratios predicted for the minimization of 

01 - u3 in eq. 13a, whereas for unconfined cases, these data correlate poorly with the 

stress ratios predicted for the minimization of dissipation (17 of eq. 13b) or strain 

energy of distortion [ wd of eq. 13~1. However, for confined cases, when stress ratios 

predicted for the three parameters ul - u3, w and w,, essentially coincide, the 

experimental data correlate well with the three parameters. One should note, 

however, that the experimental confining factor, P = u3/( u, - a,), marked in Fig. 

3b, is always smaller than P 2 0.15 needed for the coincidence of the three 

parameters. Confining factors which are smaller than 0.15 will predict stress-ratios 

curves which are intermediate between Fig. 3a and Fig. 3b. Best fit is obtained 

between the experimental stress-ratios and the predicted ones for the minimization 

of u, - u3 (Figs. 3 and 6). 

The stress invariants of the experiments provide a new, empirical criterion for 

faulting under three-dimensional states of stress. According to this criterion faulting 

occurs when: 

J,=aJ; (28) 

where J, = u, + u2 + u3 (first stress invariant), .i, = u,uZ + uzu3 + u3u, (second stress 

invariants) and Q, b are constants of the rock. Calculating power curves of type (28) 
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to our experimental data, provides an excellent fit of stresses during first and second 

yielding and final stage to the same curve (Fig. 7). Correlation coefficients are 0.96 

or larger. In the present experiments b ranges from 2.14 for Berea sandstone to 2.35 

for Candor0 limestone, and a ranges from 0.15 for Candor0 limestone to 0.23 for 

Berea sandstone. The stress invariants for the present series of experiments show no 

6 I I I I 1 1 I 1 I I I 
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Fig. 7. The emperical relationships between the first and second stress invariants. For each rock type the 

stress invariants are calculated for first and second yielding and final stage. 
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dependence on the experimental strain ratio, or strain invariants. 

The empirical criterion expressed by eq. 28 is appealing as it includes all three 

principal stresses and seems to represent several stages of yielding. However, we 

could not derive the relationship between eq. 28 and the two governing equations of 

the slip model, eqs. 9 and 12. 

In summary, the main experimental results of part I are in agreement with the 

predictions of the slip model presented here. First, three or four sets of faults, in 

orthorhombic symmetry, developed in most samples that were subjected to three-di- 

mensional deformation. Secondly, the orientation of the faults in samples of Berea 

sandstone, and Candor0 and Solnhofen limestones are in good agreement with the 

predicted orientations for the experimental strain ratios. However, orientations of 

faults in granite samples and samples with k -c 0, show no clear agreement with the 

predicted ones. Thirdly, the stresses in all experiments are in good agreement with 

the predicted stresses for slip along faults. 

TABLE I 

Comparison between three theories of faulting 

Anderson’s model Plasticity theory 

(Anderson, 195 1) (e.g. Ode, 1960) 

Slip model 

(Reches, 1978 

and here) 

Assumption 

Boundary 

conditions 

Internal 

deformation 

Mechanism of 

deformation 

Yield criterion * 

on fault plane 

Post failure 

strain 

Predicted 

fault pattern 

fault pattern 

reflects local 

stresses 

3-D stress 

3-D elastic strain 

2-D permanent 

strain 

(implicitly) 

elastic 

deformation 

7 = c + 0” tan $I, 

not considered 

two sets in 

conjugate pattern 

2-D displacement 

3-D stress 

2-D strain 

slip along slip 

surfaces 

(2-D strain) 

7 = c + 0, tan 9, 

2-D strain 

two sets in 

conjugate pattern 

fault pattern 

reflects global 

displacements 

3-D displacement 

3-D stress 

3-D strain 

slip along 

faults 

(3-D strain) 

r=C+““~ 

3-D strain 

four sets in 

orthorhombic 

symmetry 

* +i is the angle of internal friction of Navier-Coulomb yield criterion and /.I is the coefficient of friction 
on faults planes. 
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CONCLUSION 

The principal assumption of the slip model presented here is that strain applied 

on a rock is accommodated by slip along faults. The stresses which are required to 

maintain this slip, can be determined by specifying the resistance to slip along the 

faults. Furthermore, the orientations of the faults which minimize the work associ- 

ated with the applied strain, can be derived. 

The principal assump tian of Anderson’s ( 195 1) model of faulting as well as other 

models (e.g. Jaeger and Cook, 1969), is that an unfaulted rock can support stresses 

up to a measureable maximum value. This value may be defined &ally; for example, 

the stresses an a potential fault surface (Anderson, 1951), or the stresses at the 

comers of a tiny flaw (Griffith, 1924). This maximum value may also be defined 

g~~~~~~~ and then it is known as the yield criterion in the theory of plasticity (e.g. 

Ode, 1960). The plastic strain associated with faulting is either ignored {Anderson’s 

Fig. 8. A few examples of orthorhombicor “zig-zag” pattern of normal faults in extension regions. Small 

bars indicate downthrown blocks. 

a. Recent fault scarps in Nevada. Note the crooked trace of several faults (after Wallace, 1978). 

b. The fault pattern in a segment of the Rhein gaben, Germany (after I&es, 1377). 

c. Recent fault scarps in J3ix.k Valley, Nevada (after Thompson and Burke, 1973). Note that four 

orientations of faults, marked II, b, c and d can be distinguished. 
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model) or limited to plane strain (plasticity theories}. The differences in both 

assumptions and predictions between the slip model, Anderson’s model and plastic- 

ity are presented in Table I. 

Many field studies show four sets of faults with orthorhombic symmetry (Fig. 8). 

Such patterns are observed from small scale faults (e.g., Aydin, 1977: Reches, 1978: 

Bruhn and Pavlis, 1981) to the regional “zig-zag” pattern of rift valleys (e.g., Illies, 

1977; Freund and Merzer, 1976). Even fault scarps generated during a single 

earthquake, display a similar pattern (Fig. 8a. c). These patterns of faults were 

explained as results of multiple phases of faulting (e.g., Anderson, 195 1) or as being 

due to preexisting basement faults. However, in some cases the penecontemporuneous 

development of three or four sets of faults is either evident or very probable (e.g.. 

Aydin, 1977; Thompson and Burke, 1974; Bruhn and Pavlis, 1981). According to 

our slip model, fault patterns such as those shown in Fig. 8 can form in a single 

phase of faulting, as the effect of a three-dimensional strain field. 

The main advantage of the slip model is the analysis of faulting under a 

three-dimensional strain field, by using a relatively simple formulation. As three-di- 

mensional states of strain are the general cases in nature. it seems that the present 

analysis is an appropriate approach for the inte~retation of faults in the field. 
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APPENDIX 

The orientations of faults predicted by the slip model of faulting are given in four 

equal area projections (Figs. 9a, b, c, d). The orientations are given as the Ioci of the 

poles to the predicted faults in the coordinate system of the principal strain axes. 

These projections are the solutions of eqs. 26 and 27 for various values of the strain 

ratio, k = e,/e,, for various friction angles, +, and for various orientations of the 

principal strain axes. 

A predicted pole to a fault is located at the intersection of the marked curve for a 

given strain ratio k, and the marked curve for a given friction angle #. For example, 

the star in Fig. 5b represents the pole to the predicted fault under k = 4 and cp = 30”. 

These diagrams can be applied to determine the strain and the friction angle for 



Fig. 9. Equal area projections of the faults predicted by the slip model. These are the solutions of eqs. 26 

and 27. Diagrams a and b are for normal faults, diagram c is for reverse faults and diagram d for 

strike-slip faults. In all diagrams k = e2/e, is the strain ratio, and $J is the friction angle. 

field studies of faults. One should follow these steps: 

(1) The poles to the faults measured in the field should be rotated to make the 

symmetry planes of the pattern vertical and horizontal. If many faults have been 

measured, their contouring will ease the analysis. 

(2) The measured field data should be compared visually with the predicted 

diagrams (Fig. 9). The field data points, the average orientation of fault sets or the 

maxima of contoured projections, may fit a predicted strain ratio k, and a friction 

angle +. We suggest that the values of k and + that fit the observed data best, 

represent the strain during yielding and the material property respectively. Rigorous 
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statistical analysis may be done comparing the predicted numerical values of eqs. 26 

and 27, with the measured orientations, through the common statistical techniques 

for oriented data (see “Applications” above). 

(3) The proposed method may fail if the field measurements have no ortho- 

rhombic symmetry, or if they formed during more than one phase. 
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