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Abstract

It is proposed here that fault gouge forms by rock pulverization within the tip region of a fast propagating earthquake due to

the intensity of stress and rates of strain in this zone. To examine this mechanism, we calculate the deformation conditions of a

dynamic shear fracture propagating close to the limiting Rayleigh wave velocity. The mechanical conditions close to the

fracture tip are extreme: tensile stresses approach 5 GPa, volumetric strain rates exceed 105 s�1, and volumetric expansion

alternates with volumetric contraction. It is expected that a localized zone a few millimeters wide will be pulverized under these

conditions. This mechanism of dynamic gouge formation provides new insight to recent observations of the texture of gouge

from the San Andreas fault-zone and from rupture zones in South African mines. Further, as such extreme conditions develop

only during fast propagating earthquakes, presence or absence of pulverized gouge may serve as an indicator of earthquake

propagation velocity.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A common feature of brittle fault-zones is grain-size

reduction manifested by breccia and gouge formation.

The fine-grain gouge that develops in central parts of
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fault-zones is believed to govern frictional properties

of faults and the associated earthquake instability [1].

Reduction of grain-size is attributed to wear at points

of contact (asperities) along the touching surfaces of

two rock blocks due to local stress concentrations

during shear displacement [2]. Bare rock surfaces

quickly develop a gouge zone with progressive slip

reaching thicknesses larger than the height of the aspe-

rities [3]. Thus, further grain-size reduction occurs by

systematic grain crushing due to amplified grain-con-

tact stresses [4] enhanced by the formation of bstress-
tters 235 (2005) 361–374
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chainsQ [5]. According to the grain-contact concept,

cumulative slip along faults leads to continuous com-

minution and development of a self-similar particle

size distribution [4]. The fractal dimension of 2.6–2.7

of the particle size distribution for several gouge zones

[6,7] is in accord with the predictions of these models,

with some exceptions [8].

While the above mechanisms assume quasi-static

shear along pre-existing fault-zones, dynamic effects

associated with fast propagating earthquakes were

also considered. It was proposed that the high rate

of implosive loading during earthquakes at dilational

jogs of segmented faults could lead to brecciation [9].

Brune [10] suggested that fine-grain gouge along the

San Andreas Fault formed by a cycle of unloading–

loading of the normal stress across the fault during

earthquakes. He attributed the unloading to tension

associated with a slip pulse, which was observable

experimentally [11].

We derive here a new model for the formation of

fault gouge. The model is based on our recent analysis

[12] of the gouge material of two faults from extre-

mely different settings: the San Andreas Fault at Tejon

Pass, California, and a new fault formed in a South

African gold mine. We used these observations to

bound the energetics of an earthquake, and to calcu-

late the intense deformation conditions that can pul-

verize fault rocks at the tip of a propagating

earthquake. In the analysis, we determine the defor-

mation field close to the tip of a fast mode II fracture

and discuss the effects of this field on the surrounding

rocks.
2. Earthquake energetics and pulverized gouge

2.1. Fracture energy

Following Griffith’s fracture model, the loading

system of a fracture can be defined by its mechanical

energy-release-rate, G, and the stress intensity factor,

K; these parameters are related to each other as

G =K2 /E where E is Young’s modulus (for plane

stress and linear elastic solid). For a fracture propagat-

ing under equilibrium conditions, these parameters

can be equated to the material resistance to fracturing

that bconsumesQ the mechanical energy supplied by

the loading system. The propagation of a fracture
within an intact solid requires that the energy-

release-rate should reach a critical value, GC, which

for a tensile fracture, equals 2c where c is the surface

energy per unit area of the solid [13]. GC is regarded

as the fracture energy, which is a material property,

and it corresponds to fracture toughness KC.

Estimating the fracture energy, GC, of a fast pro-

pagating earthquake is more complicated than the

above relations for a slowly growing tensile fracture.

The earthquake fracture energy accounts for at least

three main energy consuming processes of the slip-

ping fault: GCcUS+UF+ES, where US is the

cumulative surface energy of gouge and new

branches that form during the earthquake, UF is the

work done to overcome the fault frictional resistance

(frictional heat), and ES is the seismic (kinetic)

energy of the accelerated particles [2]. In the section

below, we use the observed gouge texture and fault

structure to bound the fracture energy associated with

an earthquake.

2.2. Gouge texture

We recently analyzed gouge material from two

fault-zones [12]. One is the exhumed portion of the

San Andreas Fault at Tejon Pass, California, where the

fault-zone has accommodated at least 160 km of right-

lateral displacement. We mapped the fault-zone and

analyzed tens of samples collected within a 70–100 m

wide zone of pulverized Cretaceous Tejon Lookout

granite [14]. The second is the Bosman fault that

formed during a M =3.7 1997 earthquake in Harte-

beestfontein gold mine, Klerksdorp, South Africa

[15,16]. This is a new fault that formed in intact

quartzite rocks during a single earthquake with max-

imum dip-slip of 0.37 m [15,16]. The quartzitic gouge

of this fault was collected near focal depth of 2 km

from the fault-zone that was exposed by mining about

1 yr after the earthquake.

We measured the texture of about 250 samples

collected at both fault-zones using a laser particle

size analyzer that provides a complete particle-size-

distribution (PSD) in the 0.04–2000.00 Am range

[12,14]. One of our central analytical objectives was

to determine intrinsic gouge grain-size, as it was

demonstrated that time-dependent aggregation/

agglomeration of fine-grains may falsify the true

PSD [12]. Some samples were analyzed continuously



Z. Reches, T.A. Dewers / Earth and Planetary Science Letters 235 (2005) 361–374 363
in a circulating aqueous suspension for periods up to

190 h, showing progressive disaggregation into intrin-

sic grain-sizes ranging between 1.00 and 0.001 Am
[12]. Thus the PSD obtained by previous workers

(e.g. by mechanical sieving, optical methods, and

quick measurements in a laser particle size analyzer)
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may be an inaccurate representation of true gouge

texture.

The main results of the grain-size analyses are as

follows (Fig. 1) [12]: (1) The gouge samples of the

two fault-zones display similar texture (Fig. 1a); (2)
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running time (disaggregation time), and it reveals

extreme fine size of 0.3F0.2 Am (largest grains

~1.0 Am (Fig. 1a); (3) the BET surface area of the

intrinsic gouge grains approaches 80 m2/g, as was

supported by SEM observations [12].

2.3. Fault-zone structure and earthquake energetics

The structure of the Bosman Fault and its gouge

texture permit an estimation of its fracture energy GC

by using the above relations of GCcUS+UF+ES.

The Bosman Fault contains tens of subparallel frac-

tures that are ~1 mm thick and filled with the gouge

characterized above (Fig. 1). As the surface area of the

gouge formed by this earthquake reaches 80 m2/g

(Fig. 1b) [12], it corresponds to a surface energy of

0.2–0.36 MJ/m2 for a 1 mm thick gouge zone. Sum-

mation of the surface energy within 10–30 fractures

yields a total of US=2–10 MJ/m2 for this event.

The frictional work, UF=s d d, associated with this

earthquake is estimated from the fault geometry. The

Bosman Fault inclination is 60–708, the 1997 earth-

quake slip is dmax~0.4 m, and the vertical stress is

rv~54 MPa. If the horizontal stress obeys the Poisson

effect for inactive tectonic regions (rh~18 MPa), then

the shear stress can be calculated yielding UF=2.2–

3.0 MJ/m2. Thus, in this earthquake, UFVUS, namely

at least 50% of earthquake energy is invested in

producing new gouge. As it is commonly accepted

that the seismic energy, ES, is only ~6% of the total

energy [17], we ignore its contribution. Thus, the

fracture energy of this earthquake is estimated as

GC=4–13 MJ/m2, where GCcUF+US+ES.

This calculated range of fracture energy for the

Bosman Fault, GC=4–13 MJ/m2, falls in the range

of energy-release-rates estimated for earthquakes,

G =1–100 MJ/m2 [18]. It is important to note that

these two ranges were determined independently. We

now equate the loading energy (G) to the fracture

energy (GC=G), and assume that the calculated GC

for the Bosman Fault can serve as a bounding range

for the energy-release-rate during this earthquake,

namely G =4–13 MJ/m2.

2.4. Implications for gouge formation

The above observations provide three central con-

straints for gouge-forming models. First, the observed
extremely fine-grain gouge requires appreciable

energy to develop, suggesting a distinctive formation

mechanism of the gouge. Second, the accurate deter-

mination of the gouge surface energy allows us to

calculate a range of the fracture energy (GC), and thus

the energy-release-rate (G) of the M =3.7 1997 earth-

quake along the Bosman Fault. The third and most

important point is the observation that gouges from

the two fault-zones display strikingly similar particle-

size-distributions (Fig. 1) [12]. This similarity appears

in contrast to the profound differences between the

two faults, and it leads us to deduce that gouge was

formed by earthquake processes that are independent

of the total amount of cumulative fault slip (160 km

versus 0.37 m), sense of slip (strike-slip versus dip-

slip), or rock type (granite versus quartzite). We pos-

tulate that the observed gouge production was con-

trolled by the deformation conditions associated with

a fast propagating earthquake, and to explore this

option we derive these conditions below.
3. Deformation fields at the tip of a dynamic mode

II fracture

3.1. Approach

The deformation fields for the tip of a mode II,

two-dimensional fracture are determined here by

using the asymptotic solution for an in-plane propa-

gating fracture by Freund [19, Chap. 4], presented in

the Appendix. The solution was derived for an iso-

tropic elastic solid subjected to a fracture propagating

at velocities smaller than CR (Rayleigh wave velo-

city). These solutions were previously used to exam-

ine the branching process at the front of an earthquake

rupture [20,21]. We consider sub-Rayleigh dynamic

ruptures while noting that even higher propagation

velocities, in the intersonic and supersonic range,

were observed in laboratory experiments [22] and

earthquakes [22,23].

3.2. Parameter selection and frames of reference

The parameters needed for the solutions belong to

two groups, parameters that only weakly depend on

the fracture propagation velocity and parameters that

strongly depend on this velocity. For the first group
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we used typical values of a weak granite: density

q =2600 kg m�3, Poisson’s ratio=0.22, and shear

modulus l =10 GPa. The velocities of the compres-

sional waves, Cd, shear waves, CS, and Rayleigh

waves, CR, are the theoretical relations,

Cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
l þ k

q

s
; Cs ¼

ffiffiffiffi
l
q

r
; and CR ¼ 0:92Cs: ð1Þ

The solutions depend weakly on the specific

values of these parameters and we consider them as

constants.

The second group of parameters includes the stress

intensity factor KII and the energy-release-rate G. For

a planar, slowly propagating fracture in an infinite

elastic solid, KII is an indicator of the loading system

KII ¼ s p Lð Þ0:5 and G ¼ K2
II=E ð2Þ

where s is the far-field shear stress and L is the

fracture half-length. For a dynamic fracture, the
relations depend on the propagation velocity [19,

Eq. 5.3.10],

G ¼ 1þ y

2l
AIIK

2
II where AII ¼

m2as
1� yð Þ C2

SD
ð3Þ

m is the fracture propagation velocity and the other

variables are defined in the Appendix. The relations

of Eq. (3) are mapped in Fig. 2, which displays

contours of KII in the space of G and m /CS for the

solid properties listed above. The two shaded regions

marked as dEarthquakesT and dEarthquakes in minesT
will be discussed later.

We use Freund’s solutions to examine two compo-

nents of the deformation that are likely to affect gouge

formation: (1) strain rates (circumferential, radial, and

dilation); and (2) stress intensity (maximum tensile

and mean stress). The deformation is calculated in two

reference frames. The first is the bfracture-tip frameQ
in which the deformation is presented with respect to

the fracture tip as function of distance r and angle h
(Fig. 3). For a fracture propagating under uniform

conditions, these parameters retain their shape and

intensity with time. The second reference is the

bmedium-fixed frameQ in which the deformation para-

meters are calculated for a fixed point P(x1, y1) within

the medium and away from the fracture (Fig. 3). In

this reference frame the deformation parameters are

calculated as a function of the time t=(x /m) where x is
the position of the fracture tip along its propagation

axis, and m is the propagation velocity. We set t =0 for

the time when the fracture tip is located at the shortest

distance to the point, thus negative time indicates an

approaching fracture tip and positive time indicates

increasing distance of the fracture tip.
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3.3. Results

3.3.1. Bounding the solutions

In the following calculations we use the theoreti-

cally derived relations (above and in the Appendix) to

evaluate the deformation conditions at the tip region

of a propagating mode II fracture. We use the accepted

notion that the energy-release-rate, G, of a propagat-

ing fracture is equal to the fracture energy, GC, of the

host material [13]. The theoretical solutions are

bounded by measurable physical parameters to facil-

itate their application to observations in the two fault-

zones described above (and probably other). The

bounds are based on the following estimates. First,

the determined fracture energy values (GC=4–13 MJ/

m2 for the Bosman Fault, and GC=1–100 MJ/m2 [18]

for earthquakes in general) are used as bounding

values of G, the energy-release-rate of the propagating

fracture. Second, the estimated propagation velocities

of earthquakes (m =0.65 Cs for earthquakes in gold

mines [22], and m N0.75 Cs for earthquakes in general

[23,24] are used as bounds on the fracture velocity.

We use these estimates of GC and v to plot the shaded

regions in Fig. 2 that bound the ranges for two groups

of the marked earthquakes. Finally, based of our

observations that the typical width of a gouge bearing

fracture that forms during an earthquake is 1–5 mm

[15,16], we calculate the deformation conditions for

distance of F3 mm around the fracture tip. It is

assumed that the conditions calculated for this space

represent the physical conditions at similar distance

from the tip of a propagating earthquake.

The solutions for the deformation fields around the

tip of the propagating mode II fracture are presented

in two steps. The solutions are presented first by

calculating the stress field and the strain-rate field

for selected conditions and distances for the crack

tip. We then present the full range of solutions rele-

vant to earthquake propagation.

3.3.2. Fracture tip-fixed reference frame

For the calculation of the fracture-tip field, we

select a fracture that propagates at m =0.8 Cs in a

material with GC=6.7 d 10
4 J/m2; the associated stress

intensity factor is KII=30 MPa m0.5. The fracture-tip

deformation is presented by the angular variations

(�1808bh b1808 of the radial strain rate, ėr, the

circumferential strain rate, ėh, the two-dimensional
dilation rate, ėd= ėr+ ėh (Fig. 4a), the maximum ten-

sile stress r1, and the mean stress (r1+r2) /2 (Fig.

4b). The plotted results are for r =3 mm (distance

from the fracture tip) for a fracture propagating at a

velocity m =0.8 CS with the properties listed in the

caption. This distance of 3 mm is selected as the

typical observed width of the gouge zone in the Bos-

man fault-zone [16].

Fig. 4 reveals that ėr and ėh alternate their signs

between tensile (positive) strain rate and compressive

(negative) strain rate around the fracture tip. There are

four cycles of the dilation rate, ėd, that alternates

between volumetric expansion (sectors �488 to

�1008, �1358 to �1808, 0–578, and 110–1438, and
volumetric contraction (sectors �08 to �488, �1008
to �1358,57–1108, and 143–1808 (Fig. 4a). Locally,
ėd magnitude approaches the magnitude of the most

tensile strain rate; e.g., at h ~808 (Fig. 3a). In Fig. 4b

the maximum stress, r1, is tensile in a large sector of

�1808bh b608, and even the mean stress, (r1+r2) /

2, is tensile for �1808bhb08. This tensile deforma-

tion, and particularly the frequent alternation between

expansion and contraction, is a favorable condition for

rock fragmentation into gouge as discussed later.

3.3.3. Medium-fixed reference frame

We now consider the deformation at two fixed

points within the medium located at Y=F3 mm on

both sides of the fracture surface (Fig. 3). The pre-

sented parameters are the maximum tensile stress, r1,

and the two-dimensional dilation rate, ėd (Appendix).

The time variations of these parameters are shown for

a period during which the fracture tip approaches the

points. We now consider a fracture propagating at

m =0.91 CS in a material with GC=9.1 d 10
5 J/m2;

the associated stress intensity factor is KII =30 MPa

m0.5. Fig. 5 exhibits rapid intensity changes of the

maximum stress and dilation rate as the fracture

approaches the reference point. Most of the changes

occur in the time range of �1b tb1 As that corre-

sponds to distance range of �1.8b rb1.8 mm.

The most important features in Fig. 5 are the

extreme values of the stress and the dilation rate.

The figure shows that r1 is true tensile in Y b0 for

the complete time span, and r1 is true tensile in Y N0

for tb0, namely before the fractures tip passes at its

shortest distance. The intensity of r1 increases

strongly with proximity to the fracture tip and it



Y, v

ed = er θ
θ

+ e

  r

10
4

2• 

 

0.0

X, u

A

-400

0.0

Y, v

X, u

800

B
1

( 1 + 2)/2σ
σ

σ

104

-2•

.

e
.

e
.

. .

Fig. 4. Deformation fields around the tip of a propagating mode II fracture in the fracture-tip frame of reference; equations are presented in the

Appendix. The shown results are for m =0.8 CS, r =3 mm, and rock properties of q =2600 kg m�3, m =0.22, l =10 GPa, and KII =30 MPa m�0.5

(see text). A. Radial plot of the intensity of the strain rates (radial, ėr, circumferential, ėh, and dilation, ėd); dotted circle indicates vanishing
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exceeds 10 GPa at t ~0.5 As (Fig. 5a). The dilation

rate is expansion for Y b0 and it approaches 106 s�1

during �0.4b tb0 As (Fig. 5b). The dilation rate is

contraction for Y N0 and t N0, and it approaches

�9d 15 s�1 during �0.3b tb0.1 As. Further, these
extreme dilation rates rapidly invert their sense from

expansion to contraction in Y b0, and from contrac-

tion to expansion in Y N0 (Fig. 5b). The inversion

occurs during a period shorter than about 1 As indicat-
ing that the rocks on both sides of the propagating
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fracture are subjected to a cycle of intense expansion

and contraction.

3.3.4. Extreme deformation conditions at the tip

region

The complete range of deformation parameters are

mapped in Fig. 6 in the space of G and m /CS (same as

in Fig. 2). Fig. 6 also displays the parameter bounds of

earthquakes as discussed above. The map in Fig. 6a

displays the maximum tensile stress, r1, at distance of

r=3 mm and h =�1808 with respect to the fracture
tip. According to Fig. 4a, the maximum tension occurs

at this angle. Fig. 6b is the map of the maximum

dilation rate, ėd, for r =3 mm and h =�758; at this
angle the dilation rate reaches its maximum value

(Fig. 4b). Due to anti-symmetry of the stress field of

a mode II fracture, Fig. 6a also represents the absolute

value of the maximum compression, r3, for r =3 mm

and h =�1808 (Fig. 4a).
Fig. 6 indicates profound increase of stress inten-

sity and dilation rates with propagation velocity (note

logarithmic contour intervals). For example, the max-
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imum tension is ~3 GPa for a fracture propagating at

m=0.75 CS in a material with GC=1 MJ/m2 (point A,

Fig. 6a) and the stress is larger than 10 GPa for

m=0.91 CS (point B, Fig. 6a). Both these values are

for the same distance of r =3 mm, and higher values

exist at shorter distances. The corresponding dilation

rates are extreme: ėd~9d 10
4 s�1 for m =0.75 CS (point

A, Fig. 6b) that increases to ~4d 105 s�1 for m =0.91
CS (point B, Fig. 6b).

In summary, the solutions indicate:

1. Intense tensile stresses develop within a zone of ~6

mm width around the tip of a fast propagating

fracture. In this zone, r1 exceeds 3 GPa for frac-

tures that propagate at m N0.75 CS and G N1 MJ/m2

(shaded region marked dEarthquakesT in Fig. 6).

2. The dilation rates develop a zone of a few milli-

meters width around the fracture tip alternating

between expansion and contraction as the fracture

tip passes. The extreme dilation rates exceed 105

s�1 for fractures that propagate at m N0.75 CS and

G N1 MJ/m2 (shaded region marked dEarthquakesT
in Fig. 6).

3. The deformation intensity depends strongly on the

propagation velocity and distance to tip: the high

deformation intensity is restricted to a distance of

1–3 mm from the tip of a fracture with m N0.75 CS.

4. Model for gouge pulverization by earthquake

rupture

4.1. Rock pulverization at the earthquake tip

The calculations show that the deformation condi-

tions within the tip region (~6 mm wide) of a dynamic

mode II fracture are comparable in intensity (stress

intensity and strain rates) to the deformation condi-

tions that develop during shock impacts [25–27]. It

was documented that the intense deformation asso-

ciated with extraterrestrial impacts cause fragmenta-

tion, melting, and evaporation close to the impact site,

and plastic deformation and fracturing away from the

site [25]. The transition from elastic state to failure

occurs when the stress exceeds the Hugoniot Elastic

Limit (HEL) of the rock. In experiments, the HEL is

identified as the point of deviation from linear pres-

sure–volume of the elastic solid in shock conditions
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[25]. When the HEL is exceeded the activated failure

mechanisms (e.g. fracturing, plastic flow, formation of

planar-deformation-features) decrease the rock density

and mobilize plastic flow. The approximate HEL of

granite is 5 GPa [27], and this value is contoured in

Fig. 6a.

We now propose that the extreme deformation

conditions at the tip region of an earthquake rupture

could pulverize fault rocks and generate the observed

fine-grain gouge. The process is schematically dis-

played in Fig. 7, showing alternating dilation rates

within the Y b0 side of the rupture after Fig. 5b. When

the rupture tip is far from a stationary point in the

rock, stage I in Fig. 7 at a distance larger than 10 mm

for the given conditions, the dilation rates are too

small to fragment the solid rock. At a distance of
V
o

lu
m

et
ri

c 
st

ra
in

 r
at

e

I. Solid rock

II. Granulated 

Im
p

lo
si

o
n

  
  
  
  
  
E

x
p

lo
si

o
n

I

II

Fig. 7. The proposed model for gouge formation by rupture front fragmenta

time variations of the dilation rates at the rock at Y b0 as the rupture ti

recognize three stages. Stage I: The rupture front is far, and it induces

Maximum expansion rate, which can exceed 105 s�1, leads to pervasive fra

Stage III: Maximum contraction rate that further pulverizes the granular ma

In the region of Y N0, the fragmentation–pulverization cycle starts with c
about 1–3 mm, the dilation rates exceed 105 s�1

and the solid rock could be fragmented under expan-

sion (stage II in Fig. 7). After less than 1 As the

volumetric expansion is inverted into contraction

leading to further fragmentation of the newly formed

granular material (stage III, Fig. 7b).

The extreme stress (exceeding HEL), the intense

dilation rates, and the alternations of volumetric strain

are all likely contributors to the pulverization of the

fault rocks. It is well known that the fracturing style of

brittle solids is strongly affected by the loading rate

[28]. Under quasi-static loading, the solid fails initi-

ally at its weakest point, and the growing fracture

relaxes tensile stresses within a large volume. This

process forms few, long, sparsely spaced, and subpar-

allel fractures. On the other hand, under dynamic
Time (or distance) from rupture tip

rock

III. Pulverized,

rock powder 

tion during fast propagating earthquakes. Upper diagram presents the

p approaches it and passes by it (schematically after Fig. 5b). We

only negligible expansion of the rocks that remain solid. Stage II:

gmentation (possible mechanisms analyzed by Grady and Kipp [28].

terial of stage II (e.g. by mechanisms discussed by Nesterenko [30].

ontraction that alternates into expansion (Fig. 5b).
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loading, failure initiates at many, closely spaced

points, and multiple fractures grow simultaneously.

Each of these fractures relaxes the tensile stress within

a small volume [28] forming many, short, closely

spaced crosscutting fractures, leading to fragmenta-

tion of the solid.

The mechanics of solid fragmentation under

dynamic expansion was examined by Grady and

Kipp [28]. Their analysis assumes that the solid

disintegrates into many particles that move away

from the mass center. At high velocity of the par-

ticles, the system energy is dominated by two com-

ponents: the kinetic energy of the particles, which is

proportional to the loading rate, and the surface

energy of the particles, which is proportional to

their size,

U ¼ 3

10

q̇2q2

qA2
þ cA

where A is the mean particle surface area, q and q̇
are the density and rate of density change, and c is

the specific surface energy. Grady and Kipp [28]

show that the mean grain-size, d, could be predicted

by the following relations,

d ¼
ffiffiffiffiffi
20

p
KIC

qCdėe

� �2=3
ð4Þ

where KIC is the mode I fracture toughness and Cd

is the compressive wave velocity. The last equation

was successful in predicting grain-size in fragmen-

tation experiments with oil shale under conditions

leading to dynamic expansion [28].

Fragmentation also occurs under contraction load-

ing of granular material. Under quasi-static contrac-

tion, brittle grains fail by fracturing when the stresses

at grain contacts exceed compressive strength, as

observed experimentally [29]. Dynamic contraction

loading may activate several complex failure mechan-

isms including grain fracturing, void collapse, plastic

flow, grain-contact sliding, heating or melting [30].

This complexity of failure mechanisms was demon-

strated, for example, in the explosion experiments of

granular SiC samples producing grain-size reduction,

shear band formation and local melting [30]. The

relationship between grain-size and strain rate is

unknown for dynamic contraction probably due to

the process complexity.
4.2. Implications

The model proposed above is based on the follow-

ing steps:

I. The analyses of seismic and rock mechanics

observations indicate that the fracture energy of

earthquakes is in the range of GC=1–100 MJ/m2

[18], and that earthquakes propagate at velocities

exceeding ~0.75 the shear wave velocity [22,23].

II. The present analysis calculates the deformation

at the tip of a mode II fracture that propagates

under these values of fracture energy and velo-

city. It is shown that extreme deformation con-

ditions develop in a zone of a few millimeters

width around the fracture tip.

III. We propose that the extreme conditions at the

earthquake tip (the process zone) pulverize the

fault rocks.

One outstanding result of the calculations is the

strong dependence of the tip conditions on the propa-

gation velocity (Fig. 6 and related discussion). We

consider now an earthquake that propagates within a

fault-zone of uniform composition, which would indi-

cate constant fracture energy, GC. The propagation

velocity may vary along the path due to complex

variations in loading, geometry, branching and slip

history. We demonstrate in the following paragraph

that the intensity of fault rock pulverization can indi-

cate the local propagating velocity.

In the studies of earthquake rupture zones at focal

depth in South Africa mines, we analyzed the rupture

zones of three earthquakes [15,16] that profoundly

differ in the amounts of the produced pulverized rock

powder. The 1997M =3.7 event in the Hartebeestefon-

tein mine (the Bosman Fault described above) pro-

duced huge amounts of pulverized rock powder with

sub-micron grains while breaking intact rocks and

forming a new fault-zone. The M =4.3 earthquake

that occurred in 2001 along the 5Shaft fault in ARM-

5 mine near Klerksdorp, South Africa, displayed slip

along multiple preexisting fractures within a preexist-

ing wide fault-zone with at least 320 m of cumulative

displacement. This earthquake produced only a negli-

gible amount of rock powder. The third event is the

1999 M =4.6 Matjhabeng earthquake in Welkom area,

which occurred along the Dagbreek Fault with cumu-
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lative slip of a few kilometers [15]. The intensity of

rock rupturing and in particular the amount of newly

formed gouge powder, varied from highly abundant at

a few sites to negligible amounts in others [15,16].

These three earthquakes occurred under similar loading

(mining-induced normal faulting), and within the simi-

lar host rocks (brittle quartzite). We thus attribute the

differences in pulverization intensity to differences in

propagation velocities between these earthquakes, and

deduce that the 1997M =3.7 earthquake propagated at

the highest velocity.

Finally, it was proposed recently that the gouge-

zones of large faults undergo cyclical changes during

and subsequent to each large earthquake [31,32]. This

cycle includes intense fragmentation during the earth-

quake followed by cementation during the interseis-

mic stage that strengthens the fault-zone. The extreme

dilation rates calculated here could serve as the

mechanism of dynamic pulverization at the rupture

tip that generates highly chemically reactive powdered

gouge to be cemented, as part of this cycle, in asso-

ciation with fault-zone fluids [32,33].
5. Summary

We examine the deformation conditions at the tip

of a dynamic rupture that propagates at a magnitude of

velocity approaching the Rayleigh wave speed. We

found that extreme tensile stresses and rates of volu-

metric expansion and volumetric contraction exist at

short distances from the tip of such dynamic ruptures.

Previous theoretical and experimental analyses indi-

cate that such extreme dynamic conditions cause per-

vasive fragmentation of brittle solids and granular

materials. We propose that a fast propagating earth-

quake rupture pulverizes fault rocks and forms fine-

grain gouge. The model suggests that a 1–3 mm thick

gouge zone would form during a single earthquake if

the rupture propagates near or at Rayleigh wave velo-

city, regardless of shear displacement across the gouge

zone. It is proposed that evidence for such pulveriza-

tion can be used to estimate the propagation velocity

of past earthquakes.

The present model is based on an analytical solution

for a sharp-tip fracture within an elastic solid. We

envision that the calculated singular deformation

field could activate a range of nonlinear, irreversible
mechanisms such as the pulverization discussed here,

as well as plastic deformation, phase transformations

and melting [e.g., 28]. These mechanisms lead to the

development of a process zone in front of an earth-

quake rupture that facilitates the rupture propagation.
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Appendix A

The deformation fields associated with a dynamic

mode II fracture are calculated for two reference sys-

tems (see text): the bfracture tip-fixed frameQ with

respect to the fracture tip, and the bmedium-fixed

frameQ with respect to a fixed point in the medium

away from the fracture (Fig. 3). For both systems, we

used the relations derived by Freund [19]. The stresses

at point P(r, h) with respect to the tip of a propagating

mode II fracture are [19, Eqs. 4.3.23–25]

ri j ¼
KIIffiffiffiffiffiffiffi
2pr

p
XII
ij

h; mð Þ ð1aÞ

where

XII
11

¼ � 2as
D

1þ 2a2d � a2s
� � sin0:5hdffiffiffiffiffi

cd
p

�

� 1� a2s
� � sin0:5hsffiffiffiffi

cs
p

�
ð1bÞ

XII
12

¼ 1

D
4adas

cos0:5hdffiffiffiffiffi
cd

p � 1þ a2s
� �2 cos0:5hsffiffiffiffi

cs
p

��

ð1cÞ
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XII
22

¼
2as 1þ a2s

� �
D

sin0:5hdffiffiffiffiffi
cd

p � sin0:5hsffiffiffiffi
cs

p
��

ð1dÞ

and

D ¼ 4adas � 1þ a2s
� �2

ad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2=C2

d

q

as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2=C2

s

q

cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� msinh=Cdð Þ2

q
; tanhd ¼ adtanh

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� msinh=Csð Þ2

q
; tanhs ¼ astanh

where m is the fracture propagation velocity, KII is the

temporary mode II stress intensity factor, l is the shear

modulus of the elastic body, and CS and Cd are the

velocities of the shear waves and compressional waves

of this body, respectively. The particle velocities at

point, P(r, h) are

u̇u1c
masKII

lD
ffiffiffiffiffiffiffi
2pr

p 2
sin0:5hdffiffiffiffiffi

cd
p � 1þ a2s

� � sin0:5hsffiffiffiffi
cs

p
��
ð2aÞ

u̇u2c� masKII

lD
ffiffiffiffiffiffiffi
2pr

p 2adas
cos0:5hdffiffiffiffiffi

cd
p � 1þa2s

� �cos0:5hsffiffiffiffi
cs

p
� �

ð2bÞ

For calculations in the bfracture-tip frameQ, we

converted the above stresses and velocities to their

polar coordinate equivalents

rrr; rhh; rrh; u̇ur; and u̇uh

by using standard transformation relations. The polar

strain rates are calculated from the relations

ėer ¼
Bu̇ur

Br
ð3aÞ

ėeh ¼
u̇ur

r
þ 1

r

Bu̇uh

Bh
ð3bÞ

The bmedium-fixed frameQ uses a medium refer-

ence system (x, y) in which the y =0 axis coincides
with the fracture surface (Fig. 3). The deformation is

calculated at a fixed point P(x1, y1) as the fracture

approaches it and passes by it. Unlike the bfracture-tip
frameQ where the deformation at P(r, h) are time-

independent, here the r and h values of point P(x1,

y1) change with time, and one should consider P(r, h,
t). As mentioned in the text, the time is t =(x /m) where
x is the position of the fracture tip along its propaga-

tion axis, and m is the propagation velocity (Fig. 3).

For the medium-fixed frame, we calculated the max-

imum extension rate, maximum contraction rate, and

dilation rate from the rates of the principal stresses r1

and r2,

ėe1 ¼
ṙr1

E
ð4aÞ

ėe2 ¼
ṙr2

E
ð4bÞ

ėed ¼ ėe1 þ ėe2 ð4cÞ

where E is Young’s modulus.
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